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Abstract
The groundbreaking advancements in in-vehicle com-
puting/communication resources and software are
granting drivers' access to a diverse range of distrib-
uted applications and services. Edge Computing,
alongside established frameworks like the European
Telecommunications Standards Institute (ETSI) Multi-
access Edge Computing (MEC), will play a vital role
in these scenarios, by enabling the interoperable and
standardized execution of these services at the edge of
the network. In addition, Vehicular Cloud Computing
(VCC) contributes to expanding computational capac-
ity at the edge by leveraging computing/storage/com-
munication resources offered by vehicles. This syner-
gy holds the potential to forge robust computational in-
frastructures at the network edge, by favoring several
benefits like real-time data processing and minimal la-
tency. However, the research community lacks simu-
lation tools for supporting the testing and validation of
applications that exploit both the VCC paradigm and
edge-enabled networks at the same time. In this pa-
per, we present our novel simulation tool as a platform
for researchers and engineers to design, test, and en-
hance next-generation distributed applications that ex-
ploit the concepts of vehicular, edge, and cloud com-
puting. This simulation tool implements our novel ET-
SI MEC-compliant architecture, which, in a standard
way, supports the leveraging of in-vehicle resources to
increase edge computing ones. In addition, the paper
reports performance results about the efficiency/scala-
bility of our simulation platform and presents a prac-
tical use case where an original algorithm to distribute
MEC application components on vehicular resources
is validated.

1 Introduction
The rapid advancement of computing technologies and
next-generation wireless communication networks has
revolutionized in-vehicle hardware, transforming ve-
hicles into powerful mobile computation nodes on
wheels (Meng et al., 2023; Lu & Shi, 2023; Olariu,
2020). As a result, drivers can now tap into an ex-
tensive array of distributed applications and services,
very often cloud-based, as in other vertical domains,
including improved access to information and enter-
tainment features. This creates a new ecosystem with
unique real-time demands, presenting substantial chal-
lenges for the backbone network and cloud infrastruc-
ture (Liu et al., 2021). In such a scenario, edge com-
puting has emerged as a solution by providing com-
putational resources closer to the end-users. This pro-
vides a more efficient and effective way to handle the
ever-increasing demand for computing and storage re-
sources. Moreover, edge computing has the potential
to replace traditional cloud solutions by reducing net-
work stress, decreasing latency, improving efficiency,
and enabling real-time data processing.

To accelerate the adoption of this paradigm, the
European Telecommunications Standards Institute
(ETSI) has proposed the Multi-access Edge Comput-
ing (MEC) standard (ETSI, 2022). This standard en-
ables the execution of contextualized MEC-compliant
applications near the data sources and/or users and
within a virtualized and multi-tenant environment.
Furthermore, the MEC standard facilitates the inte-
gration of cloud resources with those available at the
edge, creating a complete cloud continuum of virtual-
ized resources distributed within the network.

However, it has been predicted that a connected
vehicle will transmit to cloud-based services 1 to 10
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Figure 1. A smart city setting with unexploited vehicle resources.

exabytes of data traffic per month by 2025 (Auto-
motive Edge Computing Consortium, 2021). There-
fore, with the escalating number of connected vehi-
cles, there is an anticipated strain on the network in the
upcoming years. This surge in data transmission pos-
es challenges in speed and bandwidth, impeding the
ability to meet the latency-sensitive requirements of
some applications in this emerging execution ecosys-
tem, even when the infrastructure is supported by edge
resources. To address this issue, Vehicular Cloud
Computing (VCC), also known as Vehicular Comput-
ing, has emerged as a promising paradigm to support
distributed applications designed according to the edge
cloud approach (Lu & Shi, 2023; Bitam et al., 2015;
Gerla, 2012; Olariu et al., 2011). VCC leverages the
computing/storage/communication resources available
on vehicles to create cost-effective mobile clouds at
the far-edge. These dynamic clouds can be formed au-
tonomously by vehicles, by exploiting Vehicular Ad-
Hoc Networks (VANETs). These networks facilitate
the exchange of information necessary for vehicles to
share their resources among themselves and/or with
nearby edge nodes to extend their virtualized resources
for service execution.

To support the deployment of software compo-
nents across different vehicle computer variants, the
traditional embedded platform of vehicles needs to be
replaced with a software-defined architecture (Lu &
Shi, 2023). This architecture allows vehicles to sup-
port cloud-native technologies and receive over-the-
air (OTA) updates throughout their life-cycle. Leading
software companies are collaborating closely with au-

tomotive developers to expedite the widespread imple-
mentation of this advanced architecture. One notable
solution in this direction is the ARM's Scalable Open
Architecture for Embedded Edge (SOAFEE) project.
Similarly, the challenge persists when discussing a
standardized model for supporting the integration of
these resources across the cloud continuum spectrum.
Several frameworks and models (Lu & Shi, 2023;
Olariu, 2020) proposed to incorporate/exploit re-
sources included in software-defined vehicular net-
works into/with the cloud infrastructure, ensuring
seamless connectivity and resource utilization. Fur-
thermore, since practical experiments on vehicular net-
work environments are expensive and challenging,
some recent studies have focused on providing simula-
tion frameworks (Ahmed et al., 2019). However, most
of the existing models and frameworks proposed ne-
glect and make no consideration of the challenges aris-
ing in multi-vendor and multi-domain environments
(Lu & Shi, 2023; Bitam et al., 2015). Moreover, they
mostly present algorithmic approaches for assessing
the likelihood of vehicles completing task execution.
These approaches typically do not address migration
when a vehicle exits the cloud during task execution.
Lastly, to the best of our knowledge, there is currently
no simulation tool providing a unified platform for ve-
hicular computing, enabling researchers to design and
test their algorithms.

This paper originally provides an extensive de-
scription and reports about the extensions that we re-
cently implemented to the simulation platform firstly
presented in Feraudo et al. (2023). The platform relies
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on the OMNeT++ network simulator as the underlying
framework and incorporates the Simu5G library to
model the 5G network and communications aspects. It
provides an environment where researchers and engi-
neers can explore, test, and design innovative solutions
using the vehicular computing paradigm, by leverag-
ing previously unused resources of stationary (e.g.,
parked) vehicles (Figure 1). The simulation platform
implements an improved version of the ETSI standard
(Feraudo et al., 2023), which enhances MEC-compli-
ant edge nodes with resources from vehicles within a
designated Area of Interest (AoI). In such a context,
the resources provided by the vehicles are registered
in the edge resource pool and can be accessed through
standardized interfaces. The modeled architecture al-
lows dealing with some of the primary challenges aris-
ing in vehicular computing environments, such as the
integration with cloud resources and enabling the co-
existence of heterogeneous technologies. Furthermore,
it allows dealing with resource volatility issues (i.e.,
nodes that dynamically join/leave during service pro-
visioning) via a standard-compliant migration mecha-
nism that we have originally integrated.

In addition, the paper provides a comprehensive
description of guidelines and technical insights about
our implementation deployment, by highlighting the
essential interactions for supporting dynamic resource
management, vehicle mobility, and application reloca-
tion. Moreover, it carefully identifies the contributions
of our solution with regards to the existing state-of-
the-art in the related literature. Our simulation frame-
work is openly accessible to researchers through the
GitHub repository[1].

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of the related
background, which includes a description of the ETSI
MEC reference model and vehicular computing para-
digm. Section 3 includes an overview of the related re-
search. Section 4 provides a comprehensive overview
of the architecture behind the simulation platform. Ad-
ditionally, it presents the interactions and modules that
we have originally implemented to create a MEC-
compliant vehicular computing environment in a 5G
network. Then, we evaluate the performance of our
simulation platform, while performing resource man-
agement and by providing a practical proof of its usage
in Section 5. This section also identifies the contribu-
tions of the solution proposed with respect to the exist-
ing model proposals within the state-of-the-art. Lastly,
Section 6 concludes the findings of this work and pre-
sents future directions.

2 Background

2.1 ETSI Multi-access Edge Computing
The European Telecommunications Standards Insti-
tute (ETSI) proposed the MEC standard to meet the

need for a virtualized and multi-tenant environment
at the edge of the network. It allows the execution
of so-called MEC Applications (MEC-App) compliant
with the specification. Figure 2 depicts all the main
functional components encompassed within the refer-
ence architecture which can be divided into two main
parts: the system and the host levels. Each component
is linked to the others via reference points allowing
the exchange of standardized information, i.e., man-
agement (Mm), external (Mx), and MEC Platform-re-
lated (Mp).

The host level of the architecture comprises the
main functional elements in charge of managing the
virtualized environment and its resources (i.e., storage,
computing, and network resources). Furthermore,
these components implement the real mechanism used
to instantiate, delete, and control the actual MEC-Apps
running on top of the infrastructure. Going more into
the details of each element, the Virtualisation Infra-
structure Manager (VIM) is responsible for managing
the virtualized resources of the underlying Virtualisa-
tion Infrastructure (VI) of the MEC node. All the op-
erations needed to prepare the infrastructure to run the
new MEC-App occur in this component. The MEC-H
also offers the possibility, for MEC-Apps, to interact
with standard services, i.e. Location Service, Radio
Network Information Service, Application Mobility
Service (AMS), through the MEC Platform (MEC-P).
The platform exposes a service registry that contains
the information related to the different endpoints of the
services. Finally, the MEC Platform Manager (MEC-
PM) acts as an intermediate between the orchestrator
and the MEC-H by communicating possible commu-
nication events that occur.

For the sake of clarity, we have reported all the
standard-related acronyms in Table 1.

2.2 Vehicular Computing Paradigm
The early investigations into the Vehicular Cloud
Computing (VCC) paradigm were led by Olariu et
al. (2011) and Gerla (2012). Their definition relies
on the idea that modern-day vehicles come equipped
with powerful on-board computers, ample storage, and
an array of sensing devices. Olariu et al. (2011) de-
fined Vehicular Computing as a collaborative way to
share resources among vehicles to solve problems that
would otherwise require a significant amount of time
with a more traditional centralized architecture, in par-
ticular for context-specific applications. In Gerla
(2012), Vehicular Computing keeps the information
gathered by vehicle sensors locally and share it solely
with other vehicles, as the sheer volume of in-vehicle
generated data can pose serious technical challenges
for the network infrastructure. Indeed, with the pro-
liferation of sensors in vehicles (Meng et al.,2023), it
is predicted an exponential growth in the data traffic
generated by vehicles (Automotive Edge Computing

[1] MEC extension (https://github.com/aferaudo/Simu5G/tree/feat/vim-extension)
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Figure 2. The standard MEC architecture provided by ETSI.

Table 1. Table of acronyms for MEC elements.

Abbreviations Definition

AMS Application Mobility Service

D-App Device App

MEC Multi-access Edge Computing

MEC-App MEC-Application

MEC-H MEC Host

MEC-O MEC Orchestrator

MEC-P MEC Platform

MEC-PM MEC Platform Manager

UALCMP User Application LifeCycle Management Proxy

VI Virtualization Infrastructure

VIM Virtualization Infrastructure Manager

Consortium ,2021). Therefore, Vehicular Computing
proves to be crucial in mitigating network congestion
by facilitating data pre-processing directly among
groups of vehicles (Gerla, 2012).

As evolution of the VCC paradigm, the paradigm
of Vehicular Edge Computing (VEC) has emerged as
the integration of vehicular networks with the edge in-
frastructure. In this sense, VEC facilitates the bringing
of computational resources closer to vehicle users al-
lowing the latency times and improving availability of

applications via Vehicle-to-Infrastructure (V2I) com-
munications. In a tentative to contribute to the ad-
vancement of VEC state-of-the-art, we introduced a
novel ETSI MEC-compliant architecture in our recent
work (Feraudo et al., 2023), outlined in Section 4.1.
The architecture expands the edge resource pool by
leveraging vehicular computational resources and
forms the foundation of the simulation tool presented
in this paper.

Despite its potential benefits, such a vehicular
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computing environment also poses several challenges
that must be addressed. These challenges include dis-
tributed ownership, as each vehicle has a single owner
responsible for deciding whether to share onboard re-
sources; high node mobility, which makes it difficult
to predict the vehicular residency times in the cloud
even when clouds are formed using resources of sta-
tionary cars within a parking lot; device heterogeneity,
as vehicles are manufactured by different companies;
security and privacy.

3 Related Work
To strengthen resource availability at the network
edge, various studies have suggested harnessing the
underutilized computational power of both stationary
and mobile vehicles (Lu & Shi, 2023; Olariu, 2020;
Ahmed et al., 2019). These opportunistic resources can
be utilized for diverse purposes to handle the grow-
ing number of applications used in vehicular networks.
For instance, vehicles can function as relay nodes (Liu
et al., 2011; Qin et al., 2022) to enhance network con-
nectivity or as computing nodes (Feng et al., 2017;
Huang et al., 2018; Rahman et al., 2020; Dressler et
al., 2014; Ma et al., 2021) to reduce the impact of these
applications on edge node performance. Rajput et al.
(2023) introduced the Vehicular Static Cloud-VANET
framework, a unified infrastructure that integrates re-
sources from parked vehicles—spanning communica-
tion and computing—into the cloud data center. Sim-
ilarly, Li et al. (2019) formulated an energy-efficient
model for parked vehicular computing, coupled with
an incentive mechanism. This mechanism aims to mo-
tivate vehicle owners to actively participate in cloud
formation by contributing with vehicle on-board re-
sources. Dressler et al. (2014) suggested leveraging re-
sources within parked vehicles as shared storage for
storing and retrieving location-based data on a large
scale.

Other works focused on dynamically forming mi-
cro-datacenters using in-vehicle resources without in-
frastructure requirements (Feng et al., 2017; Kamakshi
& Shankar Sriram, 2020; Bute et al., 2022). Feng et
al. (2017) presented a workflow for the autonomous
formation of groups of vehicles, utilizing an algorithm
based on ant colony optimization to schedule job dis-
tribution. Kamakshi & Shankar Sriram (2020) consid-
ered vehicles' relative mobility (i.e., relative speed and
distance) to aggregate vehicles in communities, while
Bute et al. (2022) designed an algorithm using the
fuzzy logic for vehicular cluster formation.

From another perspective, some recent studies
have focused on providing simulation frameworks
(Ahmed et al., 2019) since practical experiments on
vehicular network environments are expensive and
challenging. In fact, to validate their proposals, some
of the works in the literature (Cha et al., 2021; Ma
et al., 2021; Rahman et al., 2020; Feng et al., 2017)
have utilized these simulation frameworks mainly for
i) generating vehicle traces and ii) simulating the be-

havior of vehicular network protocols. To the best
of our knowledge, there is currently no simulation
tool that offers a single vehicular computing-based
platform where researchers can design/test their algo-
rithms and applications while exploiting at the same
time the vehicular computing paradigm and the MEC
standard deployment environment. This paper presents
the implementation details of our simulation tool,
which offers a platform where researchers and engi-
neers can exploit the features of Vehicular Computing.
The tool has been introduced in Feraudo et al. (2023).
With respect to (Feraudo et al., 2023), this article re-
ports a more comprehensive description of function-
alities, including a detailed overview of the underlin-
ing architecture and interactions needed when migrat-
ing applications running on vehicles leaving the clus-
ter. Furthermore, this paper highlights where this col-
locate within the state-of-the-art, by providing a de-
tailed study of the existing solutions in this context.

4 Unveiling Our Cutting-Edge Vehicu-
lar Computing Platform
In this section, we start by presenting a comprehensive
overview of the ETSI MEC-compliant Vehicular
Computing architecture proposed in our previous work
(Feraudo et al., 2023). Furthermore, we describe our
novel and comprehensive simulation-oriented plat-
form that facilitates the design and testing phases of
modern vehicular computing applications in 5G-en-
abled environments. Our platform significantly ex-
tends the OMNeT++ tool, a discrete and event-based
network simulator widely used in research communi-
ties, and employs the state-of-the-art Simu5G library
(Nardini et al., 2020) for 5G communication modeling.

4.1 General Overview
As illustrated in Figure 3, our approach leverages the
underutilized resources of vehicles, by integrating
them into the MEC system resource pool. In contrast
to the traditional ETSI MEC architecture (see Figure
2), the proposed model encompasses mechanisms ca-
pable of deploying and distributing applications on
MEC-H (local) and vehicular (remote) resources, all
while actively addressing concerns related to resource
volatility.

The red dashed circle in Figure 3, defined by each
MEC-H, represents the Area of Interest (AoI) within
which vehicle resources are collected. The AoI may
coincide with the coverage of a single base station
or multiple base stations. This depends on where the
MEC-H is located, i.e., at either the network edge
(close to the base station) or the central data network
(at aggregation points). In the scenario considered in
this manuscript, the AoI coincides with the parking
area where the MEC-H is located.

To model the resource acquisition procedure, our
extended MEC architecture introduces an external en-
tity at the MEC system level running a Broker, which

Simulating and Validating Vehicular Cloud Computing Applications

9:5 / 9:15



Figure 3. Our extended MEC architecture to leverage vehicle resources.

represents the message broker of a publish-subscribe
system. It allows MEC-H subscriptions to the AoI and
manages their notification whenever a new vehicle en-
ters or leaves the area. The same entity runs a reward
system encouraging vehicles to lease their local virtu-
alized resources, e.g., computing power, and join the
resource pool. It relies on a device-initiated scheme re-
quiring mobile nodes to request available rewards con-
textualized to the AoI. Thus, whenever a new device
accepts the MEC-H rewards related to that area, it pub-
lishes the amount of resources that it is willing to make
available. In addition, once a device leaves the AoI,
the MEC-H receives the notification, removes the con-
cerned resources from those available in the pool, and
starts the mobility procedure for the apps running on
that device. The mobility procedure extends the Appli-
cation Mobility Service (AMS) API provided by the
ETSI standard, enabling seamless intra-host migration
from a vehicle leaving the parking area to the local re-
sources of the MEC host. It should be noted that if a
device does not communicate its intention to leave the
area, our MEC module cannot detect autnomously this
new condition. In fact, it is the client of the application
running on the leaving device that will initiate a new
instantiation once it detects that the app is no longer re-
sponsive; this client detection process is automated in
our platform and is in line with what specified by the
ETSI standard specification (functionality of the De-
vice App running on client devices.

By exploring slightly finer technical details, the
VIM is the central MEC-H internal entity to be affect-
ed during resource acquisition, as it is in charge of ad-
ministering the MEC-H resource pool and preparing
the VI for the deployment of MEC applications. It op-
erates to handle a heterogeneous pool of distributed re-
sources. Specifically, once registered to the MEC-O,
the VIM specifies the content of interest to the Broker
corresponding to the AoI parameters (e.g., circle cen-
ter and diameter) given during its configuration. Thus,
when the Broker notifies it of new device resource ac-

quisition, the VIM stores the endpoint information cor-
responding to an external VI address and the resource
capacity of that device. This enables the VIM to mon-
itor and manage the individual contributions of each
host in terms of computational resources, effectively
handling their volatility.

4.2 Simulation Platform
This section will go into the details of the implemen-
tation of our vehicular computing architecture intro-
duced previously, by describing all the modules need-
ed to support both the exploitation of external vehicu-
lar resources in MEC-compliant scenarios and the in-
tra-host migration of the MEC applications to guaran-
tee service availability. The scenario supported by our
original simulation platform relates to smart city de-
ployment environments with parked and mobile vehi-
cles. The parked vehicles serve as resource providers
to the ETSI-compliant infrastructure, while the mov-
ing cars act as requesters for the execution of support-
ed applications.

4.2.1 Simulation Modules
In Figure 4 we present the structure and the deploy-
ment of our simulation model's main components.
From a structural point of view, our models encompass
a set of physical machines that host each of the main
entities of our extended MEC architecture, developed
as applications. In this way, each MEC actor can be
abstracted from the machine running it. A set of hosts,
the Resource Infrastructure Host, the MEC-PM, and
the MEC-P, represent the core of the MEC Host, in
charge of managing the life-cycle of MEC Apps and
providing MEC services compliant with the specifica-
tion.

The core of our tools leverages vehicle resources
enabling the execution of applications on the far-edge
layer. To support this kind of behavior, the simulation
model defines the MEC car module, which extends
the New Radio User Equipment (NRUE) defined in

Simulating and Validating Vehicular Cloud Computing Applications

9:6 / 9:15



Figure 4. Simulation tool modules structure.

Simu5G. Such a module wraps any 5G-enabled device
and provides computational resources (e.g., CPU,
RAM, and storage) to run applications orchestrated
from the MEC-H. The capabilities of this module are
two-fold: on the one hand, the running ClientResApp
allows the joining procedures to be initiated to the re-
source pool of a specific MEC-H, receives the list of
rewards, and chooses one of them deciding whether
the vehicle can join or not. At the same time, it is also
in charge of the resource release procedures when the
vehicle leaves the AoI (Section 4). On the other hand,
it executes the VI application which manages all the
local resources based on the central MEC-H instruc-
tions and is in charge of deploying or deleting any
MEC App on top of it. The VI module is engineered
to seamlessly execute its functions on any host with a
resource infrastructure, being able to integrate any 5G-
enabled device into the MEC-H resource pool.

In this new extended architecture, MEC-Hs are
now able to support both local and remote resources.
As a result, the VIM has to deal with scheduling,
preparing, and releasing both local and remote re-
sources. The scheduling part happens by means of an
extensible system of scheduling algorithms that can be
used to choose the best host on which to deploy appli-
cations based on some semantics that may favor cer-
tain behaviors. After the choice, the interaction with
the remote hosts takes place with a set of VI deployed
on top of them to handle remote commands for allo-
cating, relocating, and terminating MEC applications.

Based on the characteristics of our MEC extended
architecture, a vehicle is allowed to leave the resource
pool at any moment by causing eventual service dis-
ruption for the services it was hosting. To avoid this
problem, a migration service is mandatory to guaran-
tee the service availability and avoid delays. Our simu-
lation model deals with this requirement by providing
a custom implementation of the AMS service, extend-
ed to support MEC-assisted intra-host migrations and

address volatility issues in a transparent way. In detail,
each MEC App can be relocated from a remote host to
the central infrastructure dealing also with the context
synchronization between the two applications.

4.2.2 Simulation Interactions: Resource Man-
agement
This subsection highlights all the sequence schema
related to the allocation and release of dynamic re-
sources by the MEC-H. On a general level, this is
mainly done with the introduction of a new compo-
nent, the Broker, briefly described in Section 4.1. The
main role of this actor is to enable the registration and
deallocation of vehicle resources present in the AoI by
exploiting a system of subscription to ensure that the
necessary resources are acquired, released, and allo-
cated.

Resource Acquisition Figure 5(a) describes all the
steps required for a vehicle that enters in the AoI to
join the MEC-H resource pool. The first phase uses
an incentive mechanism consisting of the selection of
a reward for participation in the pool. The vehicle re-
ceives the list of possible rewards and selects the best
one, thus making itself available to surrender its re-
sources (steps (1) - (3)). In the second part, the vehi-
cle's interaction shifts to the broker, who receives in-
formation on the availability of the new resources and
communicates them to the MEC-H, also providing lo-
cation details (steps (3) - (6)).

Resource Allocation An example of an interaction
scheme for app instantiation on remote resources is re-
ported in Figure 6. The procedure starts with the in-
stantiation request of a new MEC App, done by the
Device App and forwarded, through a service chain,
from the UALCMP up to the VIM (steps (1) - (6))
where the actual allocation of the app is performed.
The VIM manages all the information related to the
vehicles participating in the pool and for each of them,
it maintains a set of useful information for the schedul-
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(a) Resource releasing sequence diagram. (b) Resource releasing sequence diagram.

Figure 5. Sequence diagram device-initiated scheme.

Figure 6. Resource allocation sequence diagram.

ing phase. Depending on the chosen algorithm, the app
requirements, and the resource contribution of each
host, the VIM ends up with the selection of a single re-
mote host where to deploy the application (step (7)).

Resource Releasing Figure 5(b) shows the inter-
actions needed when devices leave the resource pool.
In such a scenario, once the corresponding MEC-H re-
ceives the notification, it removes the concerned re-
sources from those available in the pool and starts the
mobility procedure for the apps running on that device.
Occasionally, a leaving vehicle can have several appli-
cations running on top of it. In this case, the resource
releasing is also the moment in which a migration pro-
cedure is triggered for each of them, as described in
Section 4.2.3.

4.2.3 Simulation Interactions: Application Mo-
bility Service
This subsection provides all the interaction schema re-
lated to our implementation of the AMS, compliant
with the specification. This version of AMS supports
the intra-host migration for applications running on a
host leaving the resource pool, helping to preserve the
service availability in a transparent way with respect

Figure 7. AMS interaction schema - Subscription
phase.

to the client actors. This is achieved through the im-
plementation of a subscriptions and notifications sys-
tem that helps in involving all the modules interested
in specific migration events. Each procedure handles a
different aspect of the procedure highlighting also the
operations that MEC Apps need to fulfill in order to
support migration scenarios.

Subscription The initial prerequisite for facilitat-
ing migration is to establish the systemic recognition
of each new MEC-App by the AMS. Figure 7 delin-
eates the comprehensive operations executed by all
involved modules upon the instantiation of a novel
MEC-App.

At the startup time, the MEC-App registers to the
AMS service receiving a registration ID. Afterward,
it subscribes to the event of INTERHOST_MOVE-
OUT_TRIGGERED to be informed about the creation
of migrated copies of the app and start the necessary
context transfer procedure.

The instantiation of the MEC-App also has back-
ward effects on the actors involved in the creation
process. The MEC-PM subscribes to two different
events which are respectively the INTER-
HOST_MOVEOUT_TRIGGERED and INTER-
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(a) UALCMP unsub-
scription.

(b) MECPM unsubscrip-
tion.

(c) MEC App unsub-
scription and unregistra-

tion.

Figure 8. AMS interaction schema - Unsubscription phase.

HOST_MOVEOUT_COMPLETED to be notified about
the leaving of the host from the resource pool and the
completion of the migration procedure. These notifi-
cations are necessary to start the migration procedure
and update the app information. Finally, the UALCMP
subscribes for the INTERHOST_MOVEOUT_COM-
PLETED event to get all the information about the new
migrated app and give the information about the new
location back to the User Application.

Unsubscription In opposition to the previous
schema, the deletion or the migration of a MEC-App
causes the unsubscription from the related events by
all the actors involved (Figure 8). Thus, the UALCMP,
the MEC-PM, and the interested MEC-App unsub-
scribe from all the INTERHOST_MOVEOUT events.
Next, the app is removed from the system with the
proper unregistration.

Context trigger Figure 9 (steps A and B) depicts
all the interactions that occur when the migration
process is initiated. This trigger is the starting point to
enable the creation of a copy of the migrating MEC-
App on the central MEC-H infrastructure. However,
the procedure holds the potential for future enhance-
ments. It enables the possibility of selecting an alter-
native host within the resource pool, according to the
supported scheduling algorithms.

Whenever a host participating in the resource pool
leaves the AoI, the broker notifies the information to
the VIM to start the resource-releasing procedure (Fig-
ure 5(b)). At the same time, the notification represents
also the instant in which the VIM checks if there is any
MEC-App running on the leaving host. In such a case,
the VIM triggers the migration for any of them. The
ParkMigrationTrigger is sent to the MEC-PM
which forwards the notification INTERHOST_MOVE-
OUT_TRIGGERED up to the AMS. Afterward, the
AMS is in charge of notifying all the modules that
have an active subscription to the TRIGGERED event.
In this phase, the MEC-PM is the main actor that re-
ceives a notification and sends the ServiceMobil-
ityRequest message to the VIM which leverages
its local VI App to create a copy of the migrating

app. This message serves to request the VIM to move
MEC-Apps from one host to another. At the end (Fig-
ure 9(b)), the MEC-PM receives the information about
the successful instantiation and emits a new notifica-
tion for the INTERHOST_MOVEOUT_TRIGGERED.
The main difference with the previous one is in the
body of the notification, which contains the informa-
tion about the location of the new app. Hence, this in-
formation can be available at the system level for all
the interested actors.

Context transfer The context transfer procedure
aims to synchronize the state of the two MEC apps —
both the migrating and the migrated. This ensures that
the new MEC is able to continue delivering the service
to client apps with less disruptions. At the startup, the
new MEC-App executes the operation of subscription
and registration and listens on a socket until the prop-
er operational state is injected. This step is triggered
by the INTERHOST_MOVEOUT_TRIGGERED notifi-
cation on the migrating app, which contains all the in-
formation related to the location of the new service
(Figure 10). Using this data, the migrating MEC-App
establishes a communication channel with the newly
created MEC-App, through which it transmits the in-
formation related to the service's state. Once the new
MEC-App has been initialized with the new state, it
forwards this information to the AMS service, which
in turn notifies the UALCMP about the new MEC-App
location. Specifically, the last step consists of updat-
ing the information related to the serving service on
the UE App side. This is achieved with a backward
process where the new location is propagated through
the Device App up to the UE App.
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(a) Step A. (b) Step B.

Figure 9. AMS interaction schema - Context trigger.

Figure 10. AMS interaction schema - Context trans-
fer.

5 Performance Evaluation
In this section, we report on some relevant perfor-
mance indicators measured on top of our simulation
platform, described previously, for some examples of
vehicular cloud computing applications. Additionally,
we show how our simulation platform can be utilized
to define and evaluate an algorithm that efficiently dis-
tributes MEC applications on stationary vehicular re-
sources.

Our experiments were conducted in a 5G stand-
alone network environment with a numerology index
μ = 2. As illustrated in Figure 11, the network consists
of two MEC-Hs (mechost1 and mechost2) each con-
nected to a gNB, with the scenario taking place in two
parking areas situated in close proximity to the gNBs.
We also implemented a basic reward scheme for the
resource acquisition procedure, which utilizes integer
values accepted by all participating vehicles. For the
sake of clarity, the evaluations outlined in this paper
consider only performance related to one MEC-H. The
experiments were carried out on a Linux Virtual Ma-

chine running OMNeT++ having 16 CPUs and 64Gb
of RAM.

5.1 Resource Management
As described in Section 4, resource management in-
volves the operations for acquiring, allocating, and re-
leasing remote resources.

Figure 12(a) illustrates the time required by the
protocols for collecting and releasing resources from
vehicles as they enter or leave the parking lot within
the MEC-H AoI. The join time shown in the figure in-
dicates the time interval for the MEC-H to recognize
the availability of a new vehicle for MEC-Apps allo-
cation (step (1) - (6) in Figure 5(a)). On the other hand,
the release time is the interval required by the MEC-
H to remove the vehicle from the resource pool (steps
(1) - (4) in Figure 5(b)). The figure indicates that the
join time follows a growing trend ranging from 13 to
40 ms as the number of cars participating in the re-
source acquisition procedure increases, whereas the re-
lease time remains relatively constant (around 7 ms).
The difference in performance between the join and re-
lease times can be attributed to the varying number of
request/response messages generated by the two pro-
tocols. On the one hand, the resource release process
necessitates only a few messages to exclude a vehicle
effectively from the pool. On the other hand, the re-
source acquisition process involves a series of request/
response messages because the device-initiated reward
scheme mandates that the vehicle requests available
rewards. However, it is unlikely for a large number of
vehicles to enter a parking lot simultaneously. Such
a scenario may only occur during special events like
festivals or football matches. To support this claim,
we analyzed the data of three parking garages in the
city of Arnhem, which is available on the Open Par-
keer data portal[2]. Figure 12(b)Figure depicts the aver-
age number of cars entering and leaving the most used
garage during rush hours. The figure clearly shows

[2] https://parkeerdata.nl/opendata/arnhem/parkeergarages/transactiedata-parkeergarages
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Figure 11. OMNeT++ simulation environment.

(a) Resource acquisition and releasing pro-
tocol times.

(b) Ceentral Garage City of Arnhem enter-
ing and leaving vehicles.

Figure 12. Resources management times and vehicle distribution in a parking lot.

that the number of parked vehicles reaches almost the
maximum considered in our test setup between 17:30
and 18:30. Moreover, it is important to note that the
peak of participating vehicles does not necessarily oc-
cur simultaneously because data were sampled with
30-minute periodicity.

To analyze the time required to allocate MEC ap-
plications on remote resources, we measured the delay
introduced by the interactions between the VI and
VIM during steps (7)-(8) of the process in Figure 6.
The simulation involves multiple UEs requesting
MEC app execution and several parked cars belonging
to the MEC-H resource pool. MEC-Apps are evenly
distributed on remote nodes using a Round Robin
scheduler. We repeated the simulation 10 times with
varying numbers of UEs and parked cars.

Figure 13 illustrates that the delays associated with
resource allocation follow an exponential growth that
depends on the number of MEC applications deployed

Figure 13. Resource allocation time.

on parked cars. This is confirmed by the overlapping
curves, which indicate that the delay values remain rel-
atively constant even when the number of parked cars
varies. It is worth mentioning that we simulated the
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worst-case scenario, in which all UEs requested MEC
app execution simultaneously, thus leading to a sub-
stantial increase in network traffic. Despite this, the
delay caused by these interactions remained negligi-
ble, even when the number of requests exceeded 300,
with a delay of approximately 40ms.

5.2 A Custom Scheduler for Stationary Ve-
hicular Resources
We have developed and tested a custom scheduling al-
gorithm using our simulation platform to demonstrate
how it can aid researchers in designing, evaluating,
and assessing new algorithms and protocols. It aims at
minimizing the number of migrations generated by ve-
hicles leaving the parking lot while running applica-
tions.

To generate vehicle and user behaviors, we recre-
ated the scenario utilized in (Feraudo et al., 2023).
This approach involves constructing a series of Pois-
son and Gaussian distributions using two real-world
datasets. The Arnhem dataset, already presented in the
previous section, was used to model the distributions
describing vehicle entry and residency times in a park-
ing lot. The Bologna WiFi dataset[3] provided informa-
tion on user activities on Open WiFi networks with-
in the city of Bologna, which enabled the creation of
distributions mimicking the user behavior during each
hour of the day. As in our previous work, we assume
that each vehicle that enters the parking lot accepts
the rewards proposed by the MEC-H, and each user
request triggers the execution of a one-to-one MEC-
Apps.

We simulated a 24-hour period of vehicle and user
activities, taking into account a parking lot capacity of
150 vehicles. We run three simulations, one for each
scheduling algorithm, namely best first, round robin,
and our custom algorithm. The performance of these
algorithms was evaluated based on the number of mi-
grations they generated, as this directly impacts the re-
liability of MEC applications. In other words, a lower
number of migrations is desirable for improved perfor-
mance. For the sake of clarity, we reported the results
associated with rush hours.

Figure 14 reports the associated performance re-
sults, by referring to the most challenging case of the
day hours with highest levels of user and vehicle ac-
tivity. The best first algorithm chooses the first avail-
able vehicle from the pool that has sufficient resources
to execute the application. This approach can lead to
a large number of migrations, as the selected vehicles
may leave the parking lot while running all the ap-
plications they are capable of executing. In fact, the
number of migrations exceeds 60 at the 12th hour of
the simulation. Conversely, the round-robin algorithm
maintains a steady number of migrations (around 7.42
in average) as the applications are equally distributed
on the vehicles belonging to the MEC-H resource

Figure 14. Comparison scheduling algorithms in
terms of migrations.

pool.
In addition, by using our simulation platform, we

have developed a custom scheduler that relies on mul-
tiple Gaussian distributions by using means and stan-
dard deviation produced after a pre-processing phase
of the Arnhem dataset, which generated the average
occupancy time based on a 10-minute interval sam-
pling. Hence, for each vehicle that belongs to the re-
source pool, the custom scheduler utilizes the time at
which it joined the pool and the aforementioned dis-
tributions to predict its residency time. It then assigns
the MEC application to the vehicle with the highest
remaining residency time. The results in the figure
demonstrate how this algorithm can largely over-per-
form the others in the considered application scenario:
even if it could be enhanced via more sophisticated
machine learning techniques, already in its simple cur-
rent version it generates only around 20 migrations at
the 18th hour of the simulation.

5.3 A Comparative Study of Existing Solu-
tions
To provide a better understanding of the contributions
made in this work, we summarized in Table 2 the
key characteristics of existing solutions that provide
a Vehicular Computing model. The table highlights
the communication model under consideration during
experimentation, how the solution handles the high
dynamism inherent in the VANET environment, re-
sources used to create the dynamic computing nodes,
i.e., mobile or stationary, adherence to a standard for
edge solutions, the provision of a open source platform
to design and test other proposals, and lastly, whether
infrastructure support is requisite for the vehicular
cloud formation.

Rajput et al. (2023) proposed the Vehicular Static
Cloud-VANET model, which aims to establish a co-
hesive infrastructure capable of hosting Intelligent

[3] https://opendata.comune.bologna.it/explore/dataset/iperbole-wifi-affluenza/information/
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Table 2. Difference between existing solutions and our scheme.

Work Comm.
Model

Mobility
Control Resources Standard

Compliance
Open

Source
Infrastructure

Support

Our 5G SA and
model 1 AMS API Relatively Stat-

ic ✓ ✓ Needed

(Rajput et al.,
2023) 802.11p N.A. Stationary X X Needed

(Li et al.,
2019) N.A. N.A. Stationary X X Needed

(Fan et al.,
2022) N.A. N.A. Stationary and

Moving X X Needed

(Dressler et
al., 2014) 802.11p N.A. Stationary X X Not Needed

(Cha et al.,
2021) 802.11p N.A. Stationary and

Moving X X Not Needed

(Feng et al.,
2017) 802.11p N.A. Stationary and

Moving X X Not Needed

(Bute et al.,
2022) LTE mode 4 N.A. Moving X X Not Needed

Transportation System (ITS) services. The model em-
ploys a centralized controller to integrate resources
provided by parked vehicle, equipped with IEEE
802.11p enabled On-Board Unit (OBU), with those
provided by the cloud, and receives request from on-
road vehicles. To assign a job to a vehicle, the authors
use the vehicle residency time, i.e., the time for which
a vehicle remains part of the vehicular cloud. This al-
lows them to avoid to worry about the migration of the
task, which occurs when a vehicle leave the parking
lot. Similarly, Li et al. (2019) considers the residen-
cy time for task allocation on parked vehicles, through
the definition of predefined contracts. Using these con-
tracts, the authors define the incentive used to moti-
vate vehicle owners in providing in-vehicle resources.
In the same direction, Fan et al. (2022) proposed a
joint task offloading and resource allocation strategy
for cloud of vehicles covered by a base station.

Dressler et al. (2014) extended an existing routing
algorithm to allow the dynamic creation of a distrib-
uted storage and improvement in network connectivity
without the need of RSUs, by exploiting resources pro-
vided by vehicle as they enter and leave a parking
lot. The authors conducted extensive simulations using
OMNet++ and SUMO (Lopez et al., 2018). Cha et
al. (2021) presented an algorithm designed for the au-
tonomous formation of vehicle clouds, leveraging a
predictive metric termed "companion time". This met-
ric delineates the duration for which vehicles maintain
proximity to each other, facilitating the creation of a
cohesive cloud of vehicles not only in parking sce-

narios but also when they are moving slowly. Simi-
larly, Feng et al. (2017) proposed AVE a framework
that exploits beaconing to dynamically form cloud of
vehicles. The authors also provide a scheduling algo-
rithm for job assignment based on the ant colony op-
timization problem. Bute et al. (2019) explore a sce-
nario involving vehicles dynamically forming clusters
on a highway to establish a collaborative computing
platform with the cloud infrastructure. The selection of
the cluster head is accomplished through the applica-
tion of a fuzzy logic algorithm, utilizing metrics that
ensure stable connectivity between nodes, thereby fa-
cilitating reliable communication.

The solutions proposed by the above authors do
not refer to a standard for the integration of vehicular
resources in the cloud-continuum spectrum. Indeed,
they mostly define a new architecture or workflow to
be used for in-vehicle resources acquisition. As out-
lined in Table 2, Mobility Control column, most of
the works propose algorithmic strategies used to eval-
uate the probability of nodes to complete task execu-
tion, thus, they do not perform migration in case of a
node leaving the cloud while executing tasks. Ge et
al. (2020) formulated the service migration process for
parked vehicle scenario, as vehicles leave the parking
lot or refuse to continue providing the service. How-
ever, the solution focuses only on providing a mathe-
matical formulation migration problem, by neglecting
other challenges introduced in Vehicular Computing
real-world scenarios. These encompass procedures for
vehicle resources join and leave procedures, incentive
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mechanism to motivate vehicle owners, and the aspect
of standardization.

To the best of our knowledge, there is currently no
simulation tool that offers a single vehicular comput-
ing-based platform where researchers can design/test
their algorithms and applications while exploiting at
the same time the vehicular computing paradigm and
the MEC standard deployment environment.

Furthermore, compared to the other existing solu-
tions, our simulation tool incorporates a MEC-assisted
procedure facilitating the migration of tasks allocated
to vehicles departing from the parking lot or declining
to continue providing services (see Section 4). At pre-
sent, the tool supports quasi-mobile vehicles, specifi-
cally those exiting the confines of the parking lot. Ad-
ditionally, as our platform adopts ETSI-compliant API
for service migration, it becomes versatile enough to
extend its support to acquiring resources from moving
vehicles.

6 Conclusions and Future Work
This paper provides the readers with a comprehensive
overview of our design for an ETSI MEC-compliant
architecture, specifically tailored to support the dy-
namic acquisition of vehicular resources. In addition,
it presents, with in-depth design and implementation
details, our simulation/oriented platform (Feraudo et
al., 2023) that faithfully replicates the proposed MEC/
compliant architecture. We claim that our platform
empowers researchers to model their solutions, by fo-
cusing on scheduling procedures at either edge level
or vehicular level, and on the development of innov-
ative applications that exploit the potential of Vehic-
ular Computing. The paper also provides a practical
deployment example that illustrates how our simula-
tion framework can be utilized for designing, testing,
and implementing vehicular computing applications.
Finally, it highlights the novel contributions of our so-
lution if compared with existing related proposals in
the state-of-the-art literature. Despite the current ver-
sion of our simulation framework enables researchers
to design applications leveraging the vehicular com-
puting paradigm, it is currently limited to supporting
stationary vehicles or slowly-mobile ones, such as the
vehicles leaving a parking lot; that priority in our im-
plementation work depended on the envisioned VCC
applications that we were willing to support. However,
considering the versatility of the model and the imple-
mentation of our simulation platform, our future plans
include expanding it to support the automated distri-
bution of MEC applications on fully-mobile vehicles.
Additionally, we intend to explore other innovative
application scenarios, such as decentralized machine
learning operations by quasi-autonomous mobile vehi-
cles, based on pre-trained models and successively im-
proved via local refinement learning.
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