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Abstract
The groundbreaking advancements in in-vehicle com-
puting/communication resources and software are grant-
ing drivers' access to a diverse range of distributed ap-
plications and services. Edge Computing, alongside es-
tablished frameworks like the European Telecommuni-
cations Standards Institute (ETSI) Multi-access Edge
Computing (MEC), will play a vital role in these sce-
narios, by enabling the interoperable and standardized
execution of these services at the edge of the network.
In addition, Vehicular Cloud Computing (VCC) con-
tributes to expanding computational capacity at the edge
by leveraging computing/storage/communication re-
sources offered by vehicles. This synergy holds the po-
tential to forge robust computational infrastructures at
the network edge, by favoring several benefits like real-
time data processing and minimal latency. However, the
research community lacks simulation tools for support-
ing the testing and validation of applications that exploit
both the VCC paradigm and edge-enabled networks at
the same time. In this paper, we present our novel sim-
ulation tool as a platform for researchers and engineers
to design, test, and enhance next-generation distributed
applications that exploit the concepts of vehicular, edge,
and cloud computing. This simulation tool implements
our novel ETSI MEC-compliant architecture, which, in
a standard way, supports the leveraging of in-vehicle re-
sources to increase edge computing ones. In addition,
the paper reports performance results about the efficien-
cy/scalability of our simulation platform and presents a
practical use case where an original algorithm to distrib-

ute MEC application components on vehicular resources
is validated.

1 Introduction
The rapid advancement of computing technologies and
next-generation wireless communication networks has
revolutionized in-vehicle hardware, transforming vehi-
cles into powerful mobile computation nodes on wheels
(Meng et al., 2023; Lu & Shi, 2023; Olariu, 2020). As
a result, drivers can now tap into an extensive array of
distributed applications and services, very often cloud-
based, as in other vertical domains, including improved
access to information and entertainment features. This
creates a new ecosystem with unique real-time demands,
presenting substantial challenges for the backbone net-
work and cloud infrastructure (Liu et al., 2021). In such
a scenario, edge computing has emerged as a solution
by providing computational resources closer to the end-
users. This provides a more efficient and effective way
to handle the ever-increasing demand for computing and
storage resources. Moreover, edge computing has the
potential to replace traditional cloud solutions by reduc-
ing network stress, decreasing latency, improving effi-
ciency, and enabling real-time data processing.

To accelerate the adoption of this paradigm, the Eu-
ropean Telecommunications Standards Institute (ETSI)
has proposed the Multi-access Edge Computing (MEC)
standard (ETSI, 2022). This standard enables the execu-
tion of contextualized MEC-compliant applications near
the data sources and/or users and within a virtualized and
multi-tenant environment. Furthermore, the MEC stan-
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dard facilitates the integration of cloud resources with
those available at the edge, creating a complete cloud
continuum of virtualized resources distributed within the
network.

However, it has been predicted that a connected ve-
hicle will transmit to cloud-based services 1 to 10 ex-
abytes of data traffic per month by 2025 (Automotive
Edge Computing Consortium, 2021). Therefore, with the
escalating number of connected vehicles, there is an an-
ticipated strain on the network in the upcoming years.
This surge in data transmission poses challenges in speed
and bandwidth, impeding the ability to meet the latency-
sensitive requirements of some applications in this
emerging execution ecosystem, even when the infra-
structure is supported by edge resources. To address this
issue, Vehicular Cloud Computing (VCC), also known
as Vehicular Computing, has emerged as a promising
paradigm to support distributed applications designed
according to the edge cloud approach (Lu & Shi, 2023;
Bitam et al., 2015; Gerla, 2012; Olariu et al., 2011).
VCC leverages the computing/storage/communication
resources available on vehicles to create cost-effective
mobile clouds at the far-edge. These dynamic clouds can
be formed autonomously by vehicles, by exploiting Ve-
hicular Ad-Hoc Networks (VANETs). These networks
facilitate the exchange of information necessary for ve-
hicles to share their resources among themselves and/or
with nearby edge nodes to extend their virtualized re-
sources for service execution.

To support the deployment of software components
across different vehicle computer variants, the traditional
embedded platform of vehicles needs to be replaced with
a software-defined architecture (Lu & Shi, 2023). This
architecture allows vehicles to support cloud-native
technologies and receive over-the-air (OTA) updates
throughout their life-cycle. Leading software companies
are collaborating closely with automotive developers to
expedite the widespread implementation of this ad-
vanced architecture. One notable solution in this direc-
tion is the ARM's Scalable Open Architecture for Em-
bedded Edge (SOAFEE) project. Similarly, the chal-
lenge persists when discussing a standardized model for
supporting the integration of these resources across the
cloud continuum spectrum. Several frameworks and
models (Lu & Shi, 2023; Olariu, 2020) proposed to in-
corporate/exploit resources included in software-defined
vehicular networks into/with the cloud infrastructure, en-
suring seamless connectivity and resource utilization.
Furthermore, since practical experiments on vehicular
network environments are expensive and challenging,
some recent studies have focused on providing simula-
tion frameworks (Ahmed et al., 2019). However, most
of the existing models and frameworks proposed neglect

and make no consideration of the challenges arising in
multi-vendor and multi-domain environments (Lu & Shi,
2023; Bitam et al., 2015). Moreover, they mostly present
algorithmic approaches for assessing the likelihood of
vehicles completing task execution. These approaches
typically do not address migration when a vehicle exits
the cloud during task execution. Lastly, to the best of our
knowledge, there is currently no simulation tool provid-
ing a unified platform for vehicular computing, enabling
researchers to design and test their algorithms.

This paper originally provides an extensive descrip-
tion and reports about the extensions that we recently im-
plemented to the simulation platform firstly presented in
Feraudo et al. (2023). The platform relies on the OM-
NeT++ network simulator as the underlying framework
and incorporates the Simu5G library to model the 5G
network and communications aspects. It provides an en-
vironment where researchers and engineers can explore,
test, and design innovative solutions using the vehicular
computing paradigm, by leveraging previously unused
resources of stationary (e.g., parked) vehicles (Figure
1). The simulation platform implements an improved
version of the ETSI standard (Feraudo et al., 2023),
which enhances MEC-compliant edge nodes with re-
sources from vehicles within a designated Area of In-
terest (AoI). In such a context, the resources provided
by the vehicles are registered in the edge resource pool
and can be accessed through standardized interfaces. The
modeled architecture allows dealing with some of the
primary challenges arising in vehicular computing envi-
ronments, such as the integration with cloud resources
and enabling the coexistence of heterogeneous technolo-
gies. Furthermore, it allows dealing with resource
volatility issues (i.e., nodes that dynamically join/leave
during service provisioning) via a standard-compliant
migration mechanism that we have originally integrated.

In addition, the paper provides a comprehensive de-
scription of guidelines and technical insights about our
implementation deployment, by highlighting the essen-
tial interactions for supporting dynamic resource man-
agement, vehicle mobility, and application relocation.
Moreover, it carefully identifies the contributions of our
solution with regards to the existing state-of-the-art in
the related literature. Our simulation framework is open-
ly accessible to researchers through the GitHub reposito-
ry[1].

The remainder of this paper is structured as follows.
Section 2 provides an overview of the related back-
ground, which includes a description of the ETSI MEC
reference model and vehicular computing paradigm.
Section 3 includes an overview of the related research.
Section 4 provides a comprehensive overview of the ar-
chitecture behind the simulation platform. Additionally,

[1] MEC extension (https://github.com/aferaudo/Simu5G/tree/feat/vim-extension)
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Figure 1. A smart city setting with unexploited vehicle resources.

it presents the interactions and modules that we have
originally implemented to create a MEC-compliant ve-
hicular computing environment in a 5G network. Then,
we evaluate the performance of our simulation platform,
while performing resource management and by provid-
ing a practical proof of its usage in Section 5. This sec-
tion also identifies the contributions of the solution pro-
posed with respect to the existing model proposals with-
in the state-of-the-art. Lastly, Section 6 concludes the
findings of this work and presents future directions.

2 Background

2.1 ETSI Multi-access Edge Computing
The European Telecommunications Standards Institute
(ETSI) proposed the MEC standard to meet the need
for a virtualized and multi-tenant environment at the
edge of the network. It allows the execution of so-called
MEC Applications (MEC-App) compliant with the spec-
ification. Figure 2 depicts all the main functional com-
ponents encompassed within the reference architecture
which can be divided into two main parts: the system and
the host levels. Each component is linked to the others
via reference points allowing the exchange of standard-
ized information, i.e., management (Mm), external (Mx),
and MEC Platform-related (Mp).

The host level of the architecture comprises the main

functional elements in charge of managing the virtual-
ized environment and its resources (i.e., storage, com-
puting, and network resources). Furthermore, these com-
ponents implement the real mechanism used to instan-
tiate, delete, and control the actual MEC-Apps running
on top of the infrastructure. Going more into the details
of each element, the Virtualisation Infrastructure Man-
ager (VIM) is responsible for managing the virtualized
resources of the underlying Virtualisation Infrastructure
(VI) of the MEC node. All the operations needed to pre-
pare the infrastructure to run the new MEC-App occur
in this component. The MEC-H also offers the possibili-
ty, for MEC-Apps, to interact with standard services, i.e.
Location Service, Radio Network Information Service,
Application Mobility Service (AMS), through the MEC
Platform (MEC-P). The platform exposes a service reg-
istry that contains the information related to the differ-
ent endpoints of the services. Finally, the MEC Platform
Manager (MEC-PM) acts as an intermediate between the
orchestrator and the MEC-H by communicating possible
communication events that occur.

For the sake of clarity, we have reported all the stan-
dard-related acronyms in Table 1.

2.2 Vehicular Computing Paradigm
The early investigations into the Vehicular Cloud Com-
puting (VCC) paradigm were led by Olariu et al. (2011)
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Figure 2. The standard MEC architecture provided by ETSI.

Table 1. Table of acronyms for MEC elements.

Abbreviations Definition

AMS Application Mobility Service

D-App Device App

MEC Multi-access Edge Computing

MEC-App MEC-Application

MEC-H MEC Host

MEC-O MEC Orchestrator

MEC-P MEC Platform

MEC-PM MEC Platform Manager

UALCMP User Application LifeCycle Management Proxy

VI Virtualization Infrastructure

VIM Virtualization Infrastructure Manager

and Gerla (2012). Their definition relies on the idea that
modern-day vehicles come equipped with powerful on-
board computers, ample storage, and an array of sens-
ing devices. Olariu et al. (2011) defined Vehicular Com-
puting as a collaborative way to share resources among

vehicles to solve problems that would otherwise require
a significant amount of time with a more traditional
centralized architecture, in particular for context-specific
applications. In Gerla (2012), Vehicular Computing
keeps the information gathered by vehicle sensors local-
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ly and share it solely with other vehicles, as the sheer
volume of in-vehicle generated data can pose serious
technical challenges for the network infrastructure. In-
deed, with the proliferation of sensors in vehicles (Meng
et al.,2023), it is predicted an exponential growth in
the data traffic generated by vehicles (Automotive Edge
Computing Consortium ,2021). Therefore, Vehicular
Computing proves to be crucial in mitigating network
congestion by facilitating data pre-processing directly
among groups of vehicles (Gerla, 2012).

As evolution of the VCC paradigm, the paradigm of
Vehicular Edge Computing (VEC) has emerged as the
integration of vehicular networks with the edge infra-
structure. In this sense, VEC facilitates the bringing of
computational resources closer to vehicle users allow-
ing the latency times and improving availability of appli-
cations via Vehicle-to-Infrastructure (V2I) communica-
tions. In a tentative to contribute to the advancement of
VEC state-of-the-art, we introduced a novel ETSI MEC-
compliant architecture in our recent work (Feraudo et al.,
2023), outlined in Section 4.1. The architecture expands
the edge resource pool by leveraging vehicular computa-
tional resources and forms the foundation of the simula-
tion tool presented in this paper.

Despite its potential benefits, such a vehicular com-
puting environment also poses several challenges that
must be addressed. These challenges include distributed
ownership, as each vehicle has a single owner respon-
sible for deciding whether to share onboard resources;
high node mobility, which makes it difficult to predict
the vehicular residency times in the cloud even when
clouds are formed using resources of stationary cars
within a parking lot; device heterogeneity, as vehicles
are manufactured by different companies; security and
privacy.

3 Related Work
To strengthen resource availability at the network edge,
various studies have suggested harnessing the underuti-
lized computational power of both stationary and mo-
bile vehicles (Lu & Shi, 2023; Olariu, 2020; Ahmed et
al., 2019). These opportunistic resources can be utilized
for diverse purposes to handle the growing number of
applications used in vehicular networks. For instance,
vehicles can function as relay nodes (Liu et al., 2011;
Qin et al., 2022) to enhance network connectivity or
as computing nodes (Feng et al., 2017; Huang et al.,
2018; Rahman et al., 2020; Dressler et al., 2014; Ma et
al., 2021) to reduce the impact of these applications on
edge node performance. Rajput et al. (2023) introduced
the Vehicular Static Cloud-VANET framework, a uni-
fied infrastructure that integrates resources from parked
vehicles—spanning communication and computing—in-
to the cloud data center. Similarly, Li et al. (2019) for-

mulated an energy-efficient model for parked vehicular
computing, coupled with an incentive mechanism. This
mechanism aims to motivate vehicle owners to actively
participate in cloud formation by contributing with ve-
hicle on-board resources. Dressler et al. (2014) suggest-
ed leveraging resources within parked vehicles as shared
storage for storing and retrieving location-based data on
a large scale.

Other works focused on dynamically forming micro-
datacenters using in-vehicle resources without infra-
structure requirements (Feng et al., 2017; Kamakshi &
Shankar Sriram, 2020; Bute et al., 2022). Feng et al.
(2017) presented a workflow for the autonomous forma-
tion of groups of vehicles, utilizing an algorithm based
on ant colony optimization to schedule job distribution.
Kamakshi & Shankar Sriram (2020) considered vehicles'
relative mobility (i.e., relative speed and distance) to ag-
gregate vehicles in communities, while Bute et al. (2022)
designed an algorithm using the fuzzy logic for vehicu-
lar cluster formation.

From another perspective, some recent studies have
focused on providing simulation frameworks (Ahmed et
al., 2019) since practical experiments on vehicular net-
work environments are expensive and challenging. In
fact, to validate their proposals, some of the works in
the literature (Cha et al., 2021; Ma et al., 2021; Rah-
man et al., 2020; Feng et al., 2017) have utilized these
simulation frameworks mainly for i) generating vehicle
traces and ii) simulating the behavior of vehicular net-
work protocols. To the best of our knowledge, there is
currently no simulation tool that offers a single vehicu-
lar computing-based platform where researchers can de-
sign/test their algorithms and applications while exploit-
ing at the same time the vehicular computing paradigm
and the MEC standard deployment environment. This
paper presents the implementation details of our simu-
lation tool, which offers a platform where researchers
and engineers can exploit the features of Vehicular Com-
puting. The tool has been introduced in Feraudo et al.
(2023). With respect to (Feraudo et al., 2023), this article
reports a more comprehensive description of functional-
ities, including a detailed overview of the underlining ar-
chitecture and interactions needed when migrating appli-
cations running on vehicles leaving the cluster. Further-
more, this paper highlights where this collocate within
the state-of-the-art, by providing a detailed study of the
existing solutions in this context.

4 Unveiling Our Cutting-Edge Vehicu-
lar Computing Platform
In this section, we start by presenting a comprehensive
overview of the ETSI MEC-compliant Vehicular Com-
puting architecture proposed in our previous work (Fer-
audo et al., 2023). Furthermore, we describe our novel
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Figure 3. Our extended MEC architecture to leverage vehicle resources.

and comprehensive simulation-oriented platform that fa-
cilitates the design and testing phases of modern vehicu-
lar computing applications in 5G-enabled environments.
Our platform significantly extends the OMNeT++ tool, a
discrete and event-based network simulator widely used
in research communities, and employs the state-of-the-
art Simu5G library (Nardini et al., 2020) for 5G commu-
nication modeling.

4.1 General Overview
As illustrated in Figure 3, our approach leverages the un-
derutilized resources of vehicles, by integrating them in-
to the MEC system resource pool. In contrast to the tra-
ditional ETSI MEC architecture (see Figure 2), the pro-
posed model encompasses mechanisms capable of de-
ploying and distributing applications on MEC-H (local)
and vehicular (remote) resources, all while actively ad-
dressing concerns related to resource volatility.

The red dashed circle in Figure 3, defined by each
MEC-H, represents the Area of Interest (AoI) within
which vehicle resources are collected. The AoI may co-
incide with the coverage of a single base station or mul-
tiple base stations. This depends on where the MEC-H
is located, i.e., at either the network edge (close to the
base station) or the central data network (at aggregation
points). In the scenario considered in this manuscript, the
AoI coincides with the parking area where the MEC-H is
located.

To model the resource acquisition procedure, our ex-
tended MEC architecture introduces an external entity
at the MEC system level running a Broker, which rep-
resents the message broker of a publish-subscribe sys-
tem. It allows MEC-H subscriptions to the AoI and man-
ages their notification whenever a new vehicle enters or
leaves the area. The same entity runs a reward system
encouraging vehicles to lease their local virtualized re-

sources, e.g., computing power, and join the resource
pool. It relies on a device-initiated scheme requiring mo-
bile nodes to request available rewards contextualized to
the AoI. Thus, whenever a new device accepts the MEC-
H rewards related to that area, it publishes the amount
of resources that it is willing to make available. In addi-
tion, once a device leaves the AoI, the MEC-H receives
the notification, removes the concerned resources from
those available in the pool, and starts the mobility pro-
cedure for the apps running on that device. The mobil-
ity procedure extends the Application Mobility Service
(AMS) API provided by the ETSI standard, enabling
seamless intra-host migration from a vehicle leaving the
parking area to the local resources of the MEC host. It
should be noted that if a device does not communicate
its intention to leave the area, our MEC module can-
not detect autnomously this new condition. In fact, it is
the client of the application running on the leaving de-
vice that will initiate a new instantiation once it detects
that the app is no longer responsive; this client detection
process is automated in our platform and is in line with
what specified by the ETSI standard specification (func-
tionality of the Device App running on client devices.

By exploring slightly finer technical details, the VIM
is the central MEC-H internal entity to be affected during
resource acquisition, as it is in charge of administering
the MEC-H resource pool and preparing the VI for the
deployment of MEC applications. It operates to handle
a heterogeneous pool of distributed resources. Specifi-
cally, once registered to the MEC-O, the VIM specifies
the content of interest to the Broker corresponding to
the AoI parameters (e.g., circle center and diameter) giv-
en during its configuration. Thus, when the Broker noti-
fies it of new device resource acquisition, the VIM stores
the endpoint information corresponding to an external
VI address and the resource capacity of that device. This
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Figure 4. Simulation tool modules structure.

enables the VIM to monitor and manage the individual
contributions of each host in terms of computational re-
sources, effectively handling their volatility.

4.2 Simulation Platform
This section will go into the details of the implementa-
tion of our vehicular computing architecture introduced
previously, by describing all the modules needed to sup-
port both the exploitation of external vehicular resources
in MEC-compliant scenarios and the intra-host migra-
tion of the MEC applications to guarantee service avail-
ability. The scenario supported by our original simula-
tion platform relates to smart city deployment environ-
ments with parked and mobile vehicles. The parked ve-
hicles serve as resource providers to the ETSI-compliant
infrastructure, while the moving cars act as requesters
for the execution of supported applications.

4.2.1 Simulation Modules
In Figure 4 we present the structure and the deployment
of our simulation model's main components. From a
structural point of view, our models encompass a set of
physical machines that host each of the main entities of
our extended MEC architecture, developed as applica-
tions. In this way, each MEC actor can be abstracted
from the machine running it. A set of hosts, the Resource
Infrastructure Host, the MEC-PM, and the MEC-P, rep-
resent the core of the MEC Host, in charge of managing
the life-cycle of MEC Apps and providing MEC services
compliant with the specification.

The core of our tools leverages vehicle resources en-
abling the execution of applications on the far-edge lay-
er. To support this kind of behavior, the simulation mod-
el defines the MEC car module, which extends the New

Radio User Equipment (NRUE) defined in Simu5G.
Such a module wraps any 5G-enabled device and pro-
vides computational resources (e.g., CPU, RAM, and
storage) to run applications orchestrated from the MEC-
H. The capabilities of this module are two-fold: on the
one hand, the running ClientResApp allows the joining
procedures to be initiated to the resource pool of a spe-
cific MEC-H, receives the list of rewards, and chooses
one of them deciding whether the vehicle can join or not.
At the same time, it is also in charge of the resource re-
lease procedures when the vehicle leaves the AoI (Sec-
tion 4). On the other hand, it executes the VI application
which manages all the local resources based on the cen-
tral MEC-H instructions and is in charge of deploying or
deleting any MEC App on top of it. The VI module is en-
gineered to seamlessly execute its functions on any host
with a resource infrastructure, being able to integrate any
5G-enabled device into the MEC-H resource pool.

In this new extended architecture, MEC-Hs are now
able to support both local and remote resources. As a re-
sult, the VIM has to deal with scheduling, preparing, and
releasing both local and remote resources. The schedul-
ing part happens by means of an extensible system of
scheduling algorithms that can be used to choose the
best host on which to deploy applications based on some
semantics that may favor certain behaviors. After the
choice, the interaction with the remote hosts takes place
with a set of VI deployed on top of them to handle re-
mote commands for allocating, relocating, and terminat-
ing MEC applications.

Based on the characteristics of our MEC extended ar-
chitecture, a vehicle is allowed to leave the resource pool
at any moment by causing eventual service disruption
for the services it was hosting. To avoid this problem,
a migration service is mandatory to guarantee the ser-
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(a) Resource releasing sequence diagram. (b) Resource releasing sequence diagram.

Figure 5. Sequence diagram device-initiated scheme.

vice availability and avoid delays. Our simulation model
deals with this requirement by providing a custom im-
plementation of the AMS service, extended to support
MEC-assisted intra-host migrations and address volatili-
ty issues in a transparent way. In detail, each MEC App
can be relocated from a remote host to the central infra-
structure dealing also with the context synchronization
between the two applications.

4.2.2 Simulation Interactions: Resource Manage-
ment
This subsection highlights all the sequence schema relat-
ed to the allocation and release of dynamic resources by
the MEC-H. On a general level, this is mainly done with
the introduction of a new component, the Broker, briefly
described in Section 4.1. The main role of this actor is
to enable the registration and deallocation of vehicle re-
sources present in the AoI by exploiting a system of sub-
scription to ensure that the necessary resources are ac-
quired, released, and allocated.

Resource Acquisition Figure 5(a) describes all the
steps required for a vehicle that enters in the AoI to join
the MEC-H resource pool. The first phase uses an incen-
tive mechanism consisting of the selection of a reward
for participation in the pool. The vehicle receives the list
of possible rewards and selects the best one, thus making
itself available to surrender its resources (steps (1) - (3)).
In the second part, the vehicle's interaction shifts to the
broker, who receives information on the availability of
the new resources and communicates them to the MEC-
H, also providing location details (steps (3) - (6)).

Resource Allocation An example of an interaction
scheme for app instantiation on remote resources is re-
ported in Figure 6. The procedure starts with the instan-
tiation request of a new MEC App, done by the Device
App and forwarded, through a service chain, from the

Figure 6. Resource allocation sequence diagram.

UALCMP up to the VIM (steps (1) - (6)) where the actu-
al allocation of the app is performed. The VIM manages
all the information related to the vehicles participating in
the pool and for each of them, it maintains a set of use-
ful information for the scheduling phase. Depending on
the chosen algorithm, the app requirements, and the re-
source contribution of each host, the VIM ends up with
the selection of a single remote host where to deploy the
application (step (7)).

Resource Releasing Figure 5(b) shows the inter-
actions needed when devices leave the resource pool.
In such a scenario, once the corresponding MEC-H re-
ceives the notification, it removes the concerned re-
sources from those available in the pool and starts the
mobility procedure for the apps running on that device.
Occasionally, a leaving vehicle can have several appli-
cations running on top of it. In this case, the resource re-
leasing is also the moment in which a migration proce-
dure is triggered for each of them, as described in Sec-

Simulating and Validating Vehicular Cloud Computing Applications

9:8 / 9:16



Figure 7. AMS interaction schema - Subscription
phase.

tion 4.2.3.

4.2.3 Simulation Interactions: Application Mobil-
ity Service
This subsection provides all the interaction schema re-
lated to our implementation of the AMS, compliant with
the specification. This version of AMS supports the in-
tra-host migration for applications running on a host
leaving the resource pool, helping to preserve the service
availability in a transparent way with respect to the client
actors. This is achieved through the implementation of
a subscriptions and notifications system that helps in in-
volving all the modules interested in specific migration
events. Each procedure handles a different aspect of the
procedure highlighting also the operations that MEC
Apps need to fulfill in order to support migration scenar-
ios.

Subscription The initial prerequisite for facilitating
migration is to establish the systemic recognition of each
new MEC-App by the AMS. Figure 7 delineates the
comprehensive operations executed by all involved
modules upon the instantiation of a novel MEC-App.

At the startup time, the MEC-App registers to the
AMS service receiving a registration ID. Afterward, it
subscribes to the event of INTERHOST_MOVE-
OUT_TRIGGERED to be informed about the creation of
migrated copies of the app and start the necessary con-
text transfer procedure.

The instantiation of the MEC-App also has backward
effects on the actors involved in the creation process.
The MEC-PM subscribes to two different events which
are respectively the INTERHOST_MOVEOUT_TRIG-
GERED and INTERHOST_MOVEOUT_COMPLETED to
be notified about the leaving of the host from the re-
source pool and the completion of the migration proce-
dure. These notifications are necessary to start the migra-
tion procedure and update the app information. Finally,
the UALCMP subscribes for the INTERHOST_MOVE-

OUT_COMPLETED event to get all the information about
the new migrated app and give the information about the
new location back to the User Application.

Unsubscription In opposition to the previous
schema, the deletion or the migration of a MEC-App
causes the unsubscription from the related events by
all the actors involved (Figure 8). Thus, the UALCMP,
the MEC-PM, and the interested MEC-App unsubscribe
from all the INTERHOST_MOVEOUT events. Next, the
app is removed from the system with the proper unregis-
tration.

Context trigger Figure 9 (steps A and B) depicts all
the interactions that occur when the migration process
is initiated. This trigger is the starting point to enable
the creation of a copy of the migrating MEC-App on the
central MEC-H infrastructure. However, the procedure
holds the potential for future enhancements. It enables
the possibility of selecting an alternative host within the
resource pool, according to the supported scheduling al-
gorithms.

Whenever a host participating in the resource pool
leaves the AoI, the broker notifies the information to
the VIM to start the resource-releasing procedure (Fig-
ure 5(b)). At the same time, the notification represents
also the instant in which the VIM checks if there is any
MEC-App running on the leaving host. In such a case,
the VIM triggers the migration for any of them. The
ParkMigrationTrigger is sent to the MEC-PM
which forwards the notification INTERHOST_MOVE-
OUT_TRIGGERED up to the AMS. Afterward, the AMS
is in charge of notifying all the modules that have an
active subscription to the TRIGGERED event. In this
phase, the MEC-PM is the main actor that receives a no-
tification and sends the ServiceMobilityRequest
message to the VIM which leverages its local VI App to
create a copy of the migrating app. This message serves
to request the VIM to move MEC-Apps from one host to
another. At the end (Figure 9(b)), the MEC-PM receives
the information about the successful instantiation and
emits a new notification for the INTERHOST_MOVE-
OUT_TRIGGERED. The main difference with the pre-
vious one is in the body of the notification, which con-
tains the information about the location of the new app.
Hence, this information can be available at the system
level for all the interested actors.

Context transfer The context transfer procedure
aims to synchronize the state of the two MEC apps —
both the migrating and the migrated. This ensures that
the new MEC is able to continue delivering the service
to client apps with less disruptions. At the startup, the
new MEC-App executes the operation of subscription
and registration and listens on a socket until the proper
operational state is injected. This step is triggered by the
INTERHOST_MOVEOUT_TRIGGERED notification on
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(a) UALCMP unsubscrip-
tion.

(b) MECPM unsubscrip-
tion. (c) MEC App unsubscrip-

tion and unregistration.

Figure 8. AMS interaction schema - Unsubscription phase.

(a) Step A. (b) Step B.

Figure 9. AMS interaction schema - Context trigger.

the migrating app, which contains all the information re-
lated to the location of the new service (Figure 10). Us-
ing this data, the migrating MEC-App establishes a com-
munication channel with the newly created MEC-App,
through which it transmits the information related to the
service's state. Once the new MEC-App has been initial-
ized with the new state, it forwards this information to
the AMS service, which in turn notifies the UALCMP
about the new MEC-App location. Specifically, the last
step consists of updating the information related to the
serving service on the UE App side. This is achieved
with a backward process where the new location is prop-
agated through the Device App up to the UE App.

Figure 10. AMS interaction schema - Context transfer.

5 Performance Evaluation
In this section, we report on some relevant performance
indicators measured on top of our simulation platform,
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Figure 11. OMNeT++ simulation environment.

described previously, for some examples of vehicular
cloud computing applications. Additionally, we show
how our simulation platform can be utilized to define
and evaluate an algorithm that efficiently distributes
MEC applications on stationary vehicular resources.

Our experiments were conducted in a 5G standalone
network environment with a numerology index μ = 2.
As illustrated in Figure 11, the network consists of two
MEC-Hs (mechost1 and mechost2) each connected to a
gNB, with the scenario taking place in two parking ar-
eas situated in close proximity to the gNBs. We also im-
plemented a basic reward scheme for the resource ac-
quisition procedure, which utilizes integer values accept-
ed by all participating vehicles. For the sake of clarity,
the evaluations outlined in this paper consider only per-
formance related to one MEC-H. The experiments were
carried out on a Linux Virtual Machine running OM-
NeT++ having 16 CPUs and 64Gb of RAM.

5.1 Resource Management
As described in Section 4, resource management in-
volves the operations for acquiring, allocating, and re-
leasing remote resources.

Figure 12(a) illustrates the time required by the pro-
tocols for collecting and releasing resources from ve-
hicles as they enter or leave the parking lot within the
MEC-H AoI. The join time shown in the figure indicates
the time interval for the MEC-H to recognize the avail-
ability of a new vehicle for MEC-Apps allocation (step
(1) - (6) in Figure 5(a)). On the other hand, the release
time is the interval required by the MEC-H to remove
the vehicle from the resource pool (steps (1) - (4) in Fig-

ure 5(b)). The figure indicates that the join time follows
a growing trend ranging from 13 to 40 ms as the num-
ber of cars participating in the resource acquisition pro-
cedure increases, whereas the release time remains rel-
atively constant (around 7 ms). The difference in per-
formance between the join and release times can be at-
tributed to the varying number of request/response mes-
sages generated by the two protocols. On the one hand,
the resource release process necessitates only a few mes-
sages to exclude a vehicle effectively from the pool. On
the other hand, the resource acquisition process involves
a series of request/response messages because the de-
vice-initiated reward scheme mandates that the vehicle
requests available rewards. However, it is unlikely for a
large number of vehicles to enter a parking lot simulta-
neously. Such a scenario may only occur during special
events like festivals or football matches. To support this
claim, we analyzed the data of three parking garages in
the city of Arnhem, which is available on the Open Par-
keer data portal[2]. Figure 12(b)Figure depicts the aver-
age number of cars entering and leaving the most used
garage during rush hours. The figure clearly shows that
the number of parked vehicles reaches almost the max-
imum considered in our test setup between 17:30 and
18:30. Moreover, it is important to note that the peak of
participating vehicles does not necessarily occur simul-
taneously because data were sampled with 30-minute pe-
riodicity.

To analyze the time required to allocate MEC appli-
cations on remote resources, we measured the delay in-
troduced by the interactions between the VI and VIM
during steps (7)-(8) of the process in Figure 6. The sim-

[2] https://parkeerdata.nl/opendata/arnhem/parkeergarages/transactiedata-parkeergarages
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(a) Resource acquisition and releasing proto-
col times.

(b) Ceentral Garage City of Arnhem entering
and leaving vehicles.

Figure 12. Resources management times and vehicle distribution in a parking lot.

Figure 13. Resource allocation time.

ulation involves multiple UEs requesting MEC app exe-
cution and several parked cars belonging to the MEC-H
resource pool. MEC-Apps are evenly distributed on re-
mote nodes using a Round Robin scheduler. We repeat-
ed the simulation 10 times with varying numbers of UEs
and parked cars.

Figure 13 illustrates that the delays associated with
resource allocation follow an exponential growth that
depends on the number of MEC applications deployed
on parked cars. This is confirmed by the overlapping
curves, which indicate that the delay values remain rel-
atively constant even when the number of parked cars
varies. It is worth mentioning that we simulated the
worst-case scenario, in which all UEs requested MEC
app execution simultaneously, thus leading to a substan-
tial increase in network traffic. Despite this, the delay
caused by these interactions remained negligible, even

when the number of requests exceeded 300, with a delay
of approximately 40ms.

5.2 A Custom Scheduler for Stationary Ve-
hicular Resources
We have developed and tested a custom scheduling algo-
rithm using our simulation platform to demonstrate how
it can aid researchers in designing, evaluating, and as-
sessing new algorithms and protocols. It aims at mini-
mizing the number of migrations generated by vehicles
leaving the parking lot while running applications.

To generate vehicle and user behaviors, we recreated
the scenario utilized in (Feraudo et al., 2023). This ap-
proach involves constructing a series of Poisson and
Gaussian distributions using two real-world datasets.
The Arnhem dataset, already presented in the previous
section, was used to model the distributions describing
vehicle entry and residency times in a parking lot. The
Bologna WiFi dataset[3] provided information on user
activities on Open WiFi networks within the city of
Bologna, which enabled the creation of distributions
mimicking the user behavior during each hour of the
day. As in our previous work, we assume that each ve-
hicle that enters the parking lot accepts the rewards pro-
posed by the MEC-H, and each user request triggers the
execution of a one-to-one MEC-Apps.

We simulated a 24-hour period of vehicle and user
activities, taking into account a parking lot capacity of
150 vehicles. We run three simulations, one for each
scheduling algorithm, namely best first, round robin, and
our custom algorithm. The performance of these algo-
rithms was evaluated based on the number of migrations

[3] https://opendata.comune.bologna.it/explore/dataset/iperbole-wifi-affluenza/information/
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Figure 14. Comparison scheduling algorithms in terms
of migrations.

they generated, as this directly impacts the reliability of
MEC applications. In other words, a lower number of
migrations is desirable for improved performance. For
the sake of clarity, we reported the results associated
with rush hours.

Figure 14 reports the associated performance results,
by referring to the most challenging case of the day
hours with highest levels of user and vehicle activity.
The best first algorithm chooses the first available vehi-
cle from the pool that has sufficient resources to execute
the application. This approach can lead to a large num-
ber of migrations, as the selected vehicles may leave the
parking lot while running all the applications they are ca-
pable of executing. In fact, the number of migrations ex-
ceeds 60 at the 12th hour of the simulation. Conversely,
the round-robin algorithm maintains a steady number of
migrations (around 7.42 in average) as the applications
are equally distributed on the vehicles belonging to the
MEC-H resource pool.

In addition, by using our simulation platform, we
have developed a custom scheduler that relies on multi-
ple Gaussian distributions by using means and standard
deviation produced after a pre-processing phase of the
Arnhem dataset, which generated the average occupancy
time based on a 10-minute interval sampling. Hence, for
each vehicle that belongs to the resource pool, the cus-
tom scheduler utilizes the time at which it joined the pool
and the aforementioned distributions to predict its resi-
dency time. It then assigns the MEC application to the
vehicle with the highest remaining residency time. The
results in the figure demonstrate how this algorithm can
largely over-perform the others in the considered appli-
cation scenario: even if it could be enhanced via more
sophisticated machine learning techniques, already in its
simple current version it generates only around 20 mi-
grations at the 18th hour of the simulation.

5.3 A Comparative Study of Existing Solu-
tions
To provide a better understanding of the contributions
made in this work, we summarized in Table 2 the key
characteristics of existing solutions that provide a Vehic-
ular Computing model. The table highlights the commu-
nication model under consideration during experimenta-
tion, how the solution handles the high dynamism inher-
ent in the VANET environment, resources used to create
the dynamic computing nodes, i.e., mobile or stationary,
adherence to a standard for edge solutions, the provision
of a open source platform to design and test other pro-
posals, and lastly, whether infrastructure support is req-
uisite for the vehicular cloud formation.

Rajput et al. (2023) proposed the Vehicular Static
Cloud-VANET model, which aims to establish a cohe-
sive infrastructure capable of hosting Intelligent Trans-
portation System (ITS) services. The model employs a
centralized controller to integrate resources provided by
parked vehicle, equipped with IEEE 802.11p enabled
On-Board Unit (OBU), with those provided by the cloud,
and receives request from on-road vehicles. To assign a
job to a vehicle, the authors use the vehicle residency
time, i.e., the time for which a vehicle remains part
of the vehicular cloud. This allows them to avoid to
worry about the migration of the task, which occurs
when a vehicle leave the parking lot. Similarly, Li et
al. (2019) considers the residency time for task alloca-
tion on parked vehicles, through the definition of prede-
fined contracts. Using these contracts, the authors define
the incentive used to motivate vehicle owners in provid-
ing in-vehicle resources. In the same direction, Fan et al.
(2022) proposed a joint task offloading and resource al-
location strategy for cloud of vehicles covered by a base
station.

Dressler et al. (2014) extended an existing routing al-
gorithm to allow the dynamic creation of a distributed
storage and improvement in network connectivity with-
out the need of RSUs, by exploiting resources provided
by vehicle as they enter and leave a parking lot. The au-
thors conducted extensive simulations using OMNet++
and SUMO (Lopez et al., 2018). Cha et al. (2021) pre-
sented an algorithm designed for the autonomous for-
mation of vehicle clouds, leveraging a predictive metric
termed "companion time". This metric delineates the du-
ration for which vehicles maintain proximity to each oth-
er, facilitating the creation of a cohesive cloud of vehi-
cles not only in parking scenarios but also when they are
moving slowly. Similarly, Feng et al. (2017) proposed
AVE a framework that exploits beaconing to dynami-
cally form cloud of vehicles. The authors also provide
a scheduling algorithm for job assignment based on the
ant colony optimization problem. Bute et al. (2019) ex-
plore a scenario involving vehicles dynamically forming
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Table 2. Difference between existing solutions and our scheme.

Work Comm.
Model

Mobility
Control Resources Standard Com-

pliance
Open

Source
Infrastructure

Support

Our 5G SA and
model 1 AMS API Relatively Static ✓ ✓ Needed

(Rajput et al.,
2023) 802.11p N.A. Stationary X X Needed

(Li et al., 2019) N.A. N.A. Stationary X X Needed

(Fan et al.,
2022) N.A. N.A. Stationary and

Moving X X Needed

(Dressler et al.,
2014) 802.11p N.A. Stationary X X Not Needed

(Cha et al.,
2021) 802.11p N.A. Stationary and

Moving X X Not Needed

(Feng et al.,
2017) 802.11p N.A. Stationary and

Moving X X Not Needed

(Bute et al.,
2022) LTE mode 4 N.A. Moving X X Not Needed

clusters on a highway to establish a collaborative com-
puting platform with the cloud infrastructure. The selec-
tion of the cluster head is accomplished through the ap-
plication of a fuzzy logic algorithm, utilizing metrics that
ensure stable connectivity between nodes, thereby facil-
itating reliable communication.

The solutions proposed by the above authors do not
refer to a standard for the integration of vehicular re-
sources in the cloud-continuum spectrum. Indeed, they
mostly define a new architecture or workflow to be used
for in-vehicle resources acquisition. As outlined in Table
2, Mobility Control column, most of the works propose
algorithmic strategies used to evaluate the probability of
nodes to complete task execution, thus, they do not per-
form migration in case of a node leaving the cloud while
executing tasks. Ge et al. (2020) formulated the service
migration process for parked vehicle scenario, as vehi-
cles leave the parking lot or refuse to continue provid-
ing the service. However, the solution focuses only on
providing a mathematical formulation migration prob-
lem, by neglecting other challenges introduced in Vehic-
ular Computing real-world scenarios. These encompass
procedures for vehicle resources join and leave proce-
dures, incentive mechanism to motivate vehicle owners,
and the aspect of standardization.

To the best of our knowledge, there is currently no
simulation tool that offers a single vehicular computing-
based platform where researchers can design/test their

algorithms and applications while exploiting at the same
time the vehicular computing paradigm and the MEC
standard deployment environment.

Furthermore, compared to the other existing solu-
tions, our simulation tool incorporates a MEC-assisted
procedure facilitating the migration of tasks allocated
to vehicles departing from the parking lot or declining
to continue providing services (see Section 4). At pre-
sent, the tool supports quasi-mobile vehicles, specifical-
ly those exiting the confines of the parking lot. Addition-
ally, as our platform adopts ETSI-compliant API for ser-
vice migration, it becomes versatile enough to extend its
support to acquiring resources from moving vehicles.

6 Conclusions and Future Work
This paper provides the readers with a comprehensive
overview of our design for an ETSI MEC-compliant ar-
chitecture, specifically tailored to support the dynamic
acquisition of vehicular resources. In addition, it pre-
sents, with in-depth design and implementation details,
our simulation/oriented platform (Feraudo et al., 2023)
that faithfully replicates the proposed MEC/compliant
architecture. We claim that our platform empowers re-
searchers to model their solutions, by focusing on sched-
uling procedures at either edge level or vehicular level,
and on the development of innovative applications that
exploit the potential of Vehicular Computing. The paper
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also provides a practical deployment example that illus-
trates how our simulation framework can be utilized for
designing, testing, and implementing vehicular comput-
ing applications. Finally, it highlights the novel contri-
butions of our solution if compared with existing relat-
ed proposals in the state-of-the-art literature. Despite the
current version of our simulation framework enables re-
searchers to design applications leveraging the vehicu-
lar computing paradigm, it is currently limited to sup-
porting stationary vehicles or slowly-mobile ones, such
as the vehicles leaving a parking lot; that priority in our
implementation work depended on the envisioned VCC
applications that we were willing to support. However,
considering the versatility of the model and the imple-
mentation of our simulation platform, our future plans
include expanding it to support the automated distribu-
tion of MEC applications on fully-mobile vehicles. Ad-
ditionally, we intend to explore other innovative appli-
cation scenarios, such as decentralized machine learning
operations by quasi-autonomous mobile vehicles, based
on pre-trained models and successively improved via lo-
cal refinement learning.
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