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Abstract
As high-performance computing (HPC) platforms
progress towards exascale, computational methods must
be revamped to successfully leverage them. In particular,
(1) asynchronous methods become of great importance
because synchronization becomes prohibitively expen-
sive and (2) resilience of computations must be
achieved, e.g., using checkpointing selectively which
may otherwise become prohibitively expensive due to
the sheer scale of the computing environment. In this
work, a simulation framework for asynchronous iterative
methods is proposed and tested on HPC accelerator
(shared-memory) architecture. The design proposed here
offers a lightweight alternative to existing computational
frameworks to allow for easy experimentation with var-
ious relaxation iterative techniques, solution updating
schemes, and predicted performance. The simulation
framework is implemented in MATLAB® using function
handles, which offers a modular and easily extensible de-
sign. An example of a case study using the simulation
framework is presented to examine the efficacy of differ-
ent checkpointing schemes for asynchronous relaxation
methods.

1 Introduction
Asynchronous iterative methods are increasing in popu-
larity recently due to their ability to be parallelized natu-
rally on modern co-processors such as GPUs and Intel®

Xeon Phi™. Many examples of recent work using fine-
grained parallel methods are available (see Anzt, Don-
garra, & Quintana-Ortí, 2016, Anzt, 2012, Chow, Anzt,

& Dongarra, 2015, Chow & Patel, 2015, Anzt, Chow, &
Dongarra, 2015 and many others in Section 2). A specif-
ic area of interest is on techniques that utilize fixed point
iteration, i.e., those techniques that solve equations of the
form

for some vector 𝑥 ∈ 𝐷 and some map 𝐺 : 𝐷 → 𝐷.
These techniques are well suited for fine-grained com-
putation and they can be executed either synchronously
or asynchronously, which helps tolerate latency in high-
performance computing (HPC) environments. Looking
forward to the future of HPC, it is important to prioritize
the develop of algorithms that are resilient to faults since
on future platforms, the rate at which faults occur is ex-
pected to increase dramatically (Cappello et al., 2009;
Cappello et al., 2014; Asanović et al., 2006; Geist & Lu-
cas, 2009).

While many asynchronous methods are designed for
shared memory architectures and asynchronous iterative
methods have gained popularity for their efficient use
of resources on shared memory accelerators in modern
HPC environments (Venkatasubramanian & Vuduc,
2009), lately there has been some work done at im-
proving the performance of asynchronous iterative meth-
ods in distributed memory environments. Such works
include attempts to implement asynchronous iterative
methods in MPI-3 using one sided remote memory ac-
cess (Gerstenberger, Besta, & Hoefler, 2014) as well as
efforts to reduce the cost of communication in these en-
vironments (Wolfson-Pou & Chow, 2016).
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Developing algorithms that are resilient to faults is
of paramount importance, and fine-grained parallel fixed
point methods are no exception. In this paper, we pro-
pose a simulation framework that can help developing
algorithms resilient to faults. These types of frameworks
allow for experimentation that is not specific to any sin-
gular platform or hardware architectures and allows ex-
periments to simulate performance on both current com-
puting environments and look at how those results may
continue to evolve along with the computer hardware.
Hence, they enable the possibility to: (1) test and vali-
date different fault-models (which are still emerging), (2)
experiment with different checkpointing libraries/mech-
anisms, and (3) help in efficiently implementing asyn-
chronous iterative methods. Additionally, it can be diffi-
cult to implement asynchronous iterative methods on a
variety of architectures to observe performance behav-
ior in different computing environments, and having a
working simulation framework allows users to conduct
extensive experiments without any major programming
investment.

This study aims to develop a simulation framework
that is focused on the performance of asynchronous it-
erative methods. The goal is to produce a lightweight
computational framework capable of being used for var-
ious asynchronous iterative methods, with an emphasis
on methods for solving linear systems, and simulating
the performance of these methods on shared memory de-
vices. The contributions of this work are

1. the development, testing, and validation of a mod-
ular simulation framework for asynchronous itera-
tive methods that can be used in the creation of new
and improved algorithms,

2. a process for the generation of time models from
HPC implementation code, which may be used to
initialize the framework,

3. a case study on how to use the framework in the de-
velopment of fault tolerant algorithms, and

4. a comparison of several implementations of an
asynchronous iterative relaxation method, used in
the proposed framework.

The simulation framework developed here is capable of
predicting performance on various HPC system configu-
rations and to show the performance of an algorithm sub-
ject to resiliency or reproducibility requirements.

The rest of this paper is organized as follows. Section
2 provides a brief summary of related studies. Section
3 gives an overview of asynchronous iterative methods,
while Section 4 describes the design and utilization of
the simulation framework in modeling the behavior of
these methods. Section 5 describes a process for collect-
ing time data from HPC implementations and develop-
ing time models from the data for use in the simulation
framework. A comparison of different implementations

is given in Section 5.3, while framework validation is
considered in Section 5.4. Section 6 gives background
information related to the creation of efficient check-
pointing routines and provides a series of numerical re-
sults. Section 7 provides conclusions.

2 Related Work
Development of computational frameworks for the pur-
poses of simulating performance has a long history in the
literature. Examples of such frameworks include Sim-
Grid (Casanova, 2001; Casanova, Legrand, & Quinson,
2008) that focuses on distributed experiments, GangSim
(Dumitrescu & Foster, 2005) and GridSim (Buyya &
Murshed, 2002) that focus on grid scheduling, and
CloudSim (Calheiros, Ranjan, De Rose, & Buyya, 2009;
Calheiros, Ranjan, Beloglazov, De Rose, & Buyya,
2011) that models performance of cloud computing en-
vironments. These environments focus on specific HPC
implementation features, such as job scheduling and data
movement, and on providing a view of how the systems
themselves behave in HPC-like scenarios. On the other
hand, the framework developed here is intended to simu-
late not only the HPC performance but also the algorith-
mic performance of a particular class of problems (e.g.,
iterative convergence to a linear system solution) under
various system configurations (e.g., asynchronous thread
behavior in shared-memory systems) and with various
additional requirements (e.g., resiliency or reproducibil-
ity).

The class of problems that the framework proposed
in this study addresses are stationary solvers, also re-
ferred to as relaxation methods. The focus is on the be-
havior of these methods in asynchronous computing en-
vironments. However, the framework also easily admits
synchronous updates; the key is the fine-grained nature
of the algorithm. Fine-grained parallel methods, specif-
ically parallel fixed point methods, are an area of in-
creased research activity due to their practical use on
HPC environments. An initial exploration of fault toler-
ance for stationary iterative linear solvers (i.e., Jacobi)
is given in (Anzt, Dongarra, & Quintana-Ortí, 2015) and
expanded on (Anzt, Dongarra, & Quintana-Ortí, 2016).
The general convergence of parallel fixed point methods
has been explored extensively (Addou & Benahmed,
2005; Frommer & Szyld, 2000; Bertsekas & Tsitsiklis,
1989; Ortega & Rheinboldt, 2000; Baudet, 1978; Be-
nahmed, 2007).

Examples of work examining the performance of
asynchronous iterative methods include an in-depth
analysis from the perspective of utilizing a system with
a co-processor (Anzt, 2012; Avron, Druinsky, & Gupta,
2015), as well as performance analysis of asynchronous
methods (Bethune, Bull, Dingle, & Higham, 2011;
Bethune, Bull, Dingle, & Higham, 2014; Hook, & Din-
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gle, 2018). In particular, both (Bethune, Bull, Dingle,
& Higham, 2011) and (Bethune, Bull, Dingle, & High-
am, 2014) focus on low level analysis of the asynchro-
nous Jacobi method, similar to the example problem that
is featured here. While many recent research results for
asynchronous iterative methods are focused on imple-
mentations that utilize a shared memory architecture,
one area of asynchronous iterative methods that has seen
significant development using a distributed memory ar-
chitecture is optimization (Cheung & Cole, 2016; Iutzel-
er, Bianchi, Ciblat, & Hachem, 2013; Hong, 2017;
Zhong & Cassandras, 2010; Srivastava & Cassandras,
2011; Tsitsiklis, Bertsekas, & Athans, 1986; Boyd,
Parikh, Chu, Peleato, & Eckstein, 2011).

The use case of the simulation framework that is fea-
tured in Section 6 shows the ability of the framework to
be used in the development of fault tolerance techniques.
The development of these techniques is important as
HPC platforms continue to become both larger and more
susceptible to faults. The expected increase in faults for
future HPC systems is detailed in a variety of differ-
ent sources. A high level article detailing the expect-
ed increase in failure rate from a reasonably non-techni-
cal point of view is available in the various versions of
the "Monster in the Closet" talk and paper (Geist, 2011;
Geist, 2012; Geist, 2016). More technical and detailed
reports are given in a variety of sources composed of
groups of different researchers from both academia and
industry (Asanović et al., 2006; Cappello et al., 2009;
Cappello et al., 2014; Snir et al., 2014; Geist & Lucas,
2009). Additionally, the Department of Energy has com-
missioned two very detailed reports about the progres-
sion towards exascale level computing; one from a gen-
eral computing standpoint (Ashby et al., 2010), and a re-
port aimed specifically at applied mathematics for exas-
cale computing (Dongarra et al., 2014). Fault tolerance
for fine-grained asynchronous iterative methods has
been studied at a fundamental level (Gärtner, 1999;
Coleman & Sosonkina, 2017), as well as made specific
to certain algorithms (Coleman, Sosonkina, & Chow,
2017; Coleman, & Sosonkina, 2018; Anzt, Dongarra, &
Quintana-Ortí, 2015; Anzt, Dongarra, & Quintana-Or-
tí, 2016). Fault tolerance for synchronous fixed point
algorithms from a numerical analysis has been investi-
gated in (Stoyanov & Webster, 2015). Error correction
for GPU based oriented asynchronous methods were in-
vestigated in (Anzt, Luszczek, Dongarra, & Heuveline,
2012).

Several numerically based fault models similar to the
one that is used in this study have been developed recent-
ly, and are used as a basis for the generalized fault sim-
ulation that is developed here. These include a "numeri-
cal" fault model that is predicated on shuffling the com-
ponents of an important data structure (Elliott, Hoem-
men, & Mueller, 2015), and a perturbation based mod-

el put forth in (Stoyanov & Webster, 2015) and (Cole-
man & Sosonkina, 2016b). Other models that are not
based upon directly injecting a bit flip, such as induc-
ing a small shift to a single component of a vector have
been considered as well (Hoemmen & Heroux, 2011;
Bridges, Ferreira, Heroux, & Hoemmen, 2012). Compar-
isons between various numerical soft fault models have
been made in (Coleman & Sosonkina, 2016a; Coleman,
Jamal, Baboulin, Khabou, & Sosonkina, 2018).

3 Asynchronous Iterative Methods
In fine-grained parallel computation, each component of
the problem (i.e., a matrix or vector entry) is updated
in a manner that does not require information from the
computations involving other components while the up-
date is being made. This allows for each computing ele-
ment (e.g., for a single processor, CUDA core, or Xeon
Phi™ core) to act independently from all other comput-
ing elements. Depending on the size of both the prob-
lem and the computing environment, each computing el-
ement may be responsible for updating a single entry to
update, or may be assigned a block that contains multiple
components. The generalized mathematical model that
is used throughout this paper comes from (Frommer &
Szyld, 2000), which in turn comes from (Chazan & Mi-
ranker, 1969; Baudet, 1978; Szyld, 1998) among many
others.

To keep the mathematical model as general as possi-
ble, consider a function, 𝐺 : 𝐷 → 𝐷, where 𝐷 is a domain
that represents a product space 𝐷 = 𝐷1 × 𝐷2 × … × 𝐷2.
The goal is to find a fixed point of the function 𝐺 inside
of the domain 𝐷. To this end, a fixed point iteration is
performed, such that

and a fixed point is declared if 𝑥𝑘+1 ≈ 𝑥𝑘. Note that the
function 𝐺 has internal component functions 𝐺𝑖 for each
sub-domain, 𝐷𝑖, in the product space, 𝐷. In particular, 𝐺𝑖
: 𝐷 → 𝐷𝑖, which gives that

As a concrete example, let each 𝐷𝑖 = ℝ . Forming the
product space of each of these 𝐷𝑖's gives that 𝐷 = ℝ𝑚 .
This leads to the more formal functional mapping, 𝑓 : ℝ𝑚

→ ℝ𝑚 . Additionally, let . In this case, each
of the individual 𝑓𝑖 component functions is defined by

. Note that each component functions op-

erates on all of the vector even if the individual func-
tion definition does not require all of the components of
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Algorithm 1 General computational model
1: for each processing element do
2: for until convergence do
3: Read from common memory
4: Compute for all

5: Update in common memory with

for all
6: end for
7: end for

to perform its specific update.
The assumption is also made that there is some finite

number of processing elements 𝑃1, 𝑃2, …, 𝑃𝑝 each of
which is assigned to a block 𝐵 of components 𝐵1, 𝐵2,
…, 𝐵𝑚 to update. Note that the number 𝑝 of processing
elements will typically be significantly smaller than the
number 𝑚 of blocks to update. With these assumptions,
the computational model can be stated in Algorithm 1.

This computational model has each processing ele-
ment read all pertinent data from global memory that is
accessible by each of the processors, update the pieces
of data specific to the component functions that it has
been assigned, and update those components in the glob-
al memory. Note that the computational model presented
in Algorithm 1 allows for either synchronous or asyn-
chronous computation; it only prescribes that an update
has to be made as an "atomic" operation (in line 5), i.e.,
without interleaving of its result. If each processing ele-
ment 𝑃𝑙 is to wait for the other processors to finish each
update, then the model describes a parallel synchronous
form of computation. On the other hand, if no order is
established for 𝑃𝑙s, then an asynchronous form of com-
putation arises.

To continue formalizing this computational model a
few more definitions are necessary. First, set a global it-
eration counter 𝑘 that increases every time any processor
reads from common memory. At the end of the work
done by any individual processor, 𝑝, the components as-
sociated with the block 𝐵𝑝 will be updated. This results

in a vector, where

the function 𝑠𝑙(𝑘) indicates how many times an specific
component has been updated. Finally, a set of individual
components can be grouped into a set, 𝐼𝑘 , that contains
all of the components that were updated on the 𝑘th iter-
ation. Given these basic definitions, the three following
conditions (along with the model presented in Algorithm
1) provide a working mathematical framework for fine-
grained asynchronous computation.

Definition 1. If the following three conditions hold

1. , i.e., only components that have
finished computing are used in the current approxi-
mation.

2. , i.e., the newest updates for
each component are used.

3. , i.e., all components will

continue to be updated.

Then given an initial , the iterative update
process defined by

where the function uses the latest updates avail-
able is called an asynchronous iteration.

This basic computational model (i.e., the combination
of Algorithm 1 and Definition 1 together) allows for
many different results on fine-grained iterative methods
that are both synchronous and asynchronous, though the
three conditions given in Definition 1 are unnecessary in
the synchronous case.

3.1 Asynchronous Relaxation Methods
Relaxation methods have been the focus of many of
the works mentioned in Section 2 such as (Chazan &
Miranker, 1969) and (Baudet, 1978); a much more de-
tailed description can be found in (Bertsekas & Tsitsik-
lis, 1989) among many other sources. This section pro-
vides an introduction that will serve as a reference for the
later work in this study.

Relaxation methods can be expressed as general
fixed point iterations of the form

where 𝐶 is the 𝑛 × 𝑛 iteration matrix, 𝑥 is an 𝑥-dimen-
sional vector that represents the solution, and 𝑑 is anoth-
er 𝑥-dimensional vector that can be used to help define
the particular problem at hand.

The Jacobi method is an asynchronous relaxation
method built for solving linear systems of the form

and following the methodology put forth in (Bertsekas &
Tsitsiklis, 1989), this can be broken down to view a spe-
cific row — say the 𝑖th — of the matrix 𝐴,
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and this equation can be solved for the 𝑖th component of
the solution, 𝑥𝑖, to give,

This equation can then be computed in an iterative man-
ner in order to give successive updates to the solution
vector. In synchronous computing environments, each
update to an element of the solution vector, 𝑥𝑖 is comput-
ed sequentially using the same data for the other compo-
nents of the solution vector (i.e., the 𝑥𝑗, in Equation (2).
Conversely, in an asynchronous computing environment,
each update to an element of the solution vector occurs
when the computing element responsible for updating
that component is ready to write the update to memory
and the other components used are simply the latest ones
available to the computing element.

Expressing Equation (2) in a block matrix form more
similar to the original form of the iteration expressed in
Equation (1),

where 𝐷 is the diagonal portion of 𝐴, and 𝐿 and 𝑈 are the
strictly lower and upper triangular portions of 𝐴 respec-
tively. This gives an iteration matrix of 𝐶 = -𝐷−1(𝐿 + 𝑈) .

Convergence of asynchronous fixed point methods
of the form presented in Equation (1) is determined by
the spectral radius of the iteration matrix, 𝐶, and dates
back to the pioneering work done by both (Chazan &
Miranker, 1969) and (Baudet, 1978):

Theorem 1. For a fixed point iteration of the form
given in Equation (1) that adheres to the asynchronous
computational model provided by Algorithm 1 and Def-
inition 1, if the spectral radius of 𝐶, ρ(|𝐶|), is less than
one, then the iterative method will converge to the fixed
point solution.

As noted in (Wolfson-Pou & Chow, 2016), the itera-
tion matrix 𝐶 that is used in the Jacobi relaxation method
serves as a worst case for relaxation methods of the form
discussed here. However, because of the ubiquitous use
of the Jacobi method in parallel solutions of large prob-
lems in many different domains in science and engineer-
ing we use the Asynchronous (Block) Jacobi method
predominantly throughout the remainder of this study.
Note that many of the concepts and ideas expressed in
this paper can be easily adapted to more complex algo-

rithms.

4 Design of Simulation Framework
The simulation framework proposed here is designed to
simulate the performance of an asynchronous iterative
method operating on multiple computing elements using
a single processing element. In this simulation frame-
work, the emphasis is on fixed-point iterations[1]

for some . In the framework, certain compo-
nents are assigned (possibly distinct) times for perform-
ing an update to their components, and the effects of var-
ious delay structures can be examined.

The development of the present computational
framework is shown by the flow diagram in Figure 1,
which is typical for computation frameworks, except for
the third Timing Distributions stage. A mathematical for-
mulation of a problem (e.g., as a set of equations) is
presented first (Mathematical Model stage). The mathe-
matical model is then implemented in an HPC environ-
ment (Parallel Implementation stage). Timing and algo-
rithm-performance data (e.g., iterations to convergence)
are collected from parallel executions on a subset of
configurations and problem sizes, such that, in the pro-
posed framework, timing distributions may be construct-
ed (Timing Distributions stage) and used to simulate
the performance of the mathematical model for target
configurations and requirements. Since such simulations
are faster and less-cumbersome to set-up, they allow
for easy experimenting with variations of the underlying
mathematical model, parallel implementation type and
environment, or, eventually, in the expected perfor-
mance.

The simulation framework developed here works to
simulate the performance of generic asynchronous re-
laxation methods in shared memory environments. The
simulation framework can then be modified to reflect
changes in the environment, or else can be utilized to
demonstrate the effectiveness of algorithmic modifica-
tions.

As a simple example, take 𝑛 = 2. Then
and, using the terminology of

Section 3,

In a traditional fully synchronous environment, both
functions, 𝐺1 and 𝐺2, would be called simultaneously

[1] Throughout the text, vector notation is occasionally adopted to emphasize when functions take all components of x as opposed to a single component,
such as x1.
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Figure 1. Stages in the proposed framework development.

Figure 2. Block diagram of the simulation framework.

and no subsequent calls would be executed until both
functions had returned and synchronized all results. In a
fully asynchronous environment, both functions would
be allowed to execute again immediately upon their own
return, leading to a case where one of 𝑥1 or 𝑥2 may be
updated more frequently than the other. Per Definition 1,
both functions use the latest values of that are avail-
able to them when the function call is initiated. For in-
stance, if the processing element that was assigned to
update the component 𝑥1 was ten times as fast as the
processing element assigned to update 𝑥2, then in the
amount of time needed to update 𝑥2 once, the compo-
nent 𝑥1 will have been updated ten times, and when 𝐺2 is
called for the second time it will be called using the lat-
est component of 𝑥1 (which has been updated 10 times),
and the latest component of 𝑥2 (which has only been up-
dated once).

A block diagram showing the flow of the simulation
framework is provided in Figure 2. The framework mod-
els the performance of methods that solve the linear sys-
tem

using relaxation methods in either a synchronous or
asynchronous manner.

The simulation requires as input the matrix 𝐴, the
right hand side 𝑏 and an initial guess at the solution, 𝑥0.
The important pieces of the simulation are all passed as
functions to the tool. There are three functions required:

1. An update function that specifies how to perform
the relaxation. A common technique for this is giv-
en by Equation (2). It is certainly possible to modify
this equation to obtain different updates, as de-
scribed, e.g., in (Saad, 2003).

2. An update pattern function that determines which
elements of the matrix 𝐴 are assigned to each sim-
ulated processor. A common technique for this as-
signment, is to evenly divide the work among all
of the available processors, however other patterns
are also possible. For example, the use of random-
ization in the solution of linear systems via relax-
ation methods has gained some popularity in the
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fields of optimization and machine learning (see,
e.g., (Avron, Druinsky, & Gupta, 2015) and refer-
ences therein) and update patterns such as this are
easy to implement inside of this framework.

3. An update time function that captures the empirical
information that was captured from parallel perfor-
mance runs on the HPC hardware. This function
will typically be used to sample from the timing dis-
tribution that was generated beforehand. Note that,
since each simulated processor makes calls to this
function independently, the simulated performance
will be asynchronous so long as the function re-
turns different values upon different calls. Defin-
ing an update time function that has constant return
(or constant return for every processor) provides a
means to show synchronous performance.

By varying the three functions that are passed to the
framework, not only can the HPC performance be pre-
dicted by making changes to the update time function,
but various modifications to the basic algorithm can be
quickly and easily compared in a manner that reflects re-
al world asynchronous performance. With the renewed
research interest in asynchronous iterative methods that
perform relaxation updates, oftentimes performance be-
tween new variants and existing algorithms is only com-
pared in simple synchronous experiments; the simulation
framework proposed here allows for a more meaningful
comparison between methods that does not require de-
velopment of parallel implementations of all the meth-
ods or algorithm variations that are involved.

The simulation framework requires some data that
specifies parameters concerning the particular run of the
simulation such as the desired tolerance, the number of
processors to simulate, and a computational scale factor.
The framework itself is developed in MATLAB® and the
three required functions are passed as function handles.

The simulation itself (see Simulation block in Figure
2) progresses by reading in the user provided input data,
assigning an initial update pattern and time to each
processor, and then beginning the main loop. Inside of
the main loop, the time increments and a check is per-
formed to see if the current time matches with the sched-
uled update time for any of the processors, if so, the up-
date function is called and then a time for the next up-
date is assigned to the processor that just updated and (if
desired) the update pattern for the current processor is
changed. After this, a check is performed on the size of
the residual to determine if the exit criteria is met before
the time is incremented again and the loop starts over. A
pseudocode representation of the simulation framework
for simulated asynchronous Jacobi is given in Algorithm
2.

Algorithm 2, a given update time τ𝑙 will often not be
sampled as an integer. The simulation adjusts for this by

Algorithm 2 Asynchronous Jacobi simulation
1: Input: , initial guess for , a number

of processing elements , an input random num-
ber distribution

2: Output: Solution vector
3: Assign processor update times. by

sampling from an appropriate random number
distribution

4: Assign elements to each simulated pro-
cessing element

5: for until convergence do
6: for each processing element do
7: if then
8: for each element assigned to

do

9:

10: end for
11: Retrieve a new update time by sam-

pling from the input distribution
12: end if
13: end for
14: Calculate the residual as in Equation (3) and

check termination conditions
15: end for

scaling the number that is sampled by the appropriate or-
der of magnitude, adjusting the maximum value allowed
for 𝑡 accordingly, and then scaling back the final time
calculated by the simulation. For example, if the desired
time precision is hundredths of a second, and the time re-
sulting for the first sampling of τ𝑙 was 1.234𝑠, then the
simulation would perform the following steps:

1.

2.
3.

where 𝑠 referenced is the “scale_factor” defined in the
block diagram given by Figure 2. For example, if the de-
sired precision is hundredths of a second, 𝑠 = 102, and
the sampled value τ𝑙 becomes

Inside of the simulation framework, time is abstracted
away to “units of time”, and then the final time is scaled
back into the appropriate units. This allows the frame-
work to be adapted to future HPC environments, as well
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as examining the impact of the standard variance of sin-
gle core performance on multi-core hardware elements if
the method that is used is tuned to be completely asyn-
chronous. It should be possible — by adding or remov-
ing appropriate communication penalties — to simulate
the performance of different memory architectures (e.g.,
distributed or cloud computing environments). This is
left as future work although the method for doing this in-
side of the proposed framework is straightforward.

4.1 Sample Use-Cases for the Framework
Let the matrix 𝐴 result from a simple two dimensional fi-
nite-difference discretization of the Laplacian over a 10
× 10 grid, resulting in a 100 × 100 matrix with an aver-
age of 4.6 non-zero entries per row. The Laplacian

is a partial differential equation (PDE) commonly found
in both science and engineering. The example problems
taken in this study can be thought of as simulating the
diffusion of heat across a two dimensional surface given
some heat source along the boundary of the problem.

Once the PDE is discretized over the desired grid us-
ing finite differences, typically central finite differences,
the linear system

is set up to be solved for a random right-hand side b that
represents the desired boundary conditions. All problems
considered in this study use Dirichlet boundary condi-
tions. For the examples in this particular subsection, the
righthand side is generated by taking each component
sampled as a uniform random number between −0:5 and
0:5, and then normalizing the resultant vector. The itera-
tive Jacobi method proceeds until the residual

is reduced past some desired threshold.
To begin with, an example of nominal performance

of the solution of the two dimensional Laplacian in a
synchronous environment is provided by Figure 3.

Figure 3. Example of nominal performance of the syn-
chronous Jacobi iteration.

Next, consider the same problem from above, but in two
slightly more complicated scenarios. In Figure 4 one of
the ten processors involved in updating blocks of compo-
nents of 𝑥 is provided updates more slowly than the other
processors. This could reflect the scenario where updates
are either performed synchronously or asynchronously
where the effect of variance in performance is negligi-
ble, and a single processor has degraded performance.
This can also be viewed as a look at the impact of asyn-
chronous behavior on the Jacobi algorithm. Each curve
shows the progression of the (global) residual subject to
having a single slower processor with different degrees
of slowdown (from zero to 11x).

Figure 4. Example of experiments within the simulation
framework; single processor slowdown.

In Figure 5 the processor updates are not restricted to oc-
cur synchronously. Instead, the processors are assumed
to have similar performance and perform their updates in
time 𝑡𝑖 ∼ 𝑁(u, σ2) where the mean is set to 10 units of
time and the variance is different for each curve depict-
ed in the plot. An increase in the variance of processor
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performance, regardless of the timing distribution, could
come about for a variety of reasons; an example of a sce-
nario in the future could be having chips with more cores
and lower voltage that are designed to address the chal-
lenges in creating very large scale HPC environments.

Figure 5. Example of experiments within the simulation
framework; effect of variance.

5 Asynchronous Jacobi Implementa-
tions for the Framework
Figure 4 and Figure 5 show relative differences in com-
pute times among sharedmemory computing elements
for a specific problem and a specific asynchronous it-
erative method. A more general simulation framework,
which can be used for modeling and testing any syn-
chronous or asynchronous iterative relaxation method, is
presented here. Baseline, non-resilient method behavior
may be reproduced in the framework; further, the user
may also investigate fault injection and checkpointing.

The user decomposes the method according to the
input parameters required by the simulation framework.
The update function that performs the relaxation has an
associated operational time, both of which are defined
by the user. Functionality within the relaxation may be
isolated into discrete operations with corresponding time
information; the level of granularity is decided by the
user. For example, time to complete an operation in the
simulation framework may be modeled with a proba-
bility density function derived from empirical data. To
model time to perform specific operations or calcula-
tions during method execution, data is collected from
the application during execution. In the implementation
code, operations are enclosed within calls to time func-
tions, which measure time to perform the operations.
In this work the OpenMP® library function
omp_get_wtime() is used to measure wall time. For

HPC implementations that use MPI, MPI_Wtime()
may be used to measure wall time. Fine-grained oper-
ations in the code should not overlap such that mea-
surements overlap, i.e., for one operation, do not mea-
sure time function calls of another operation. After tak-
ing sufficient measurements, an operation is modeled by
fitting a probability density function to a normalized his-
togram of the time data. This function may be included
as part of the input to the framework. Note that when
comparing simulated run times with HPC run times, it
may be preferable to use an unmodified version of the
HPC implementation code that does not have time func-
tion calls and mechanisms for storing or printing times.
These functions and activities may increase run time and
provide an inaccurate metric for comparison.

This section describes two asynchronous relaxation
method implementations and two corresponding use cas-
es of the simulation framework. For both implementa-
tions, the test problem is a two dimensional discretiza-
tion of the Laplacian

where the right-hand side is initialized with Dirichlet
boundary conditions. Both implementations use Open-
MP® for shared-memory parallelism and are executed
on the shared-memory computing platform nicknamed
Rulfo, which is an Intel® Xeon Phi™ Knight's Landing[2]

having 7210 model processor with 64 cores. Each core
may optimally execute 4 threads for 256 threads total,
and runs at 1.30 GHz. The simulation framework and
experiments were implemented in MATLAB® R2018a,
while the Jacobi implementations were written in C/C++
using the Intel C compiler version 17.04 and OpenMP®

version 4.5.

5.1 Implementation 1: General Jacobi
Solver
In this case, the heat problem is represented mathemati-
cally by a sparse matrix, which is solved by an asynchro-
nous general Jacobi method. The Laplacian is generated
over a 100 × 100 grid resulting in a matrix of size 10,000
× 10,000 with 49,600 non-zeros with an average of 4.96
non-zeros per row. The vector b from the resulting linear
system,

is initialized such that the final solution vector has 𝑥𝑖 = 1
for all 𝑖. The initial guess 𝑥0 is all zeros.

In this implementation, all threads but one perform
relaxations on assigned components, and a dedicated
thread computes the global residual norm value 𝑏−𝐴𝑥(𝑡)

[2] Rulfo is a part of computing resources of the Department of Modeling, Simulation and Visualization Engineering at Old Dominion University.
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(a) Calculation time. (b) Number of iterations, average per thread.

Figure 6. Performance variations between Safe and Race as a function of thread count.

that determines satisfactory convergence. Each thread
retrieves the data it needs from shared memory, performs
the necessary computations, and, in the case of the re-
laxation threads, writes the result back to shared memo-
ry. Synchronous shared-memory implementations of all
classes of algorithms commonly use mutex locks to
avoid race conditions with read and write operations.
However, this type of asynchronous relaxation method
may be less dependent on these safeguards for two rea-
sons: (1) iterative methods can correct some errors with
more iterations, if necessary, and (2) threads executing
operations in asynchronous iterative methods are more
likely to be at different stages of the iterative cycle,
meaning fewer threads may be writing to and reading
from the same memory location concurrently. This gen-
eral Jacobi solver has two varieties: (a) Safe which uses
mutex locks to avoid race conditions, and (b) Race
which permits race conditions. Safe uses OpenMP®

locks to copy 𝑥(𝑡) safely from shared memory and to up-
date 𝑥(𝑡+1). Pseudocode for this process is given in Algo-
rithm 3, where bold upper-case text indicates that Open-
MP® locks are employed. The algorithm for Race is
identical to Algorithm 3, with the exception that locks
are omitted.

Figure 6 compares Safe and Race calculation times
and number of iterations. Calculation times and average
iteration counts are similar for thread counts up to 81,
but behavior diverges beyond that. For thread counts 101
through 501, Race requires more iterations, perhaps to

compensate for threads reading and computing with in-
accurate 𝑥 vectors. Despite this, Figure 6(a) shows that
Race is still quicker for the largest thread counts, per-
haps because threads do not use locks to access data and
eliminate that overhead cost. Figure 6(a) also shows that
perhaps locks are not too costly for intermediate thread
counts 101, 201, and 251, where Safe outperforms Race
in terms of calculation time.

Both Safe and Race were executed over several tri-
als and varying thread counts on the experimental HPC
platform. For each trial, the times for a thread to access
the solution in shared memory (Line 6 of Algorithm 3),
compute the relaxation for the rows assigned to it (Line
11), and to update the solution in shared memory (Line
13) were captured. This data was used to generate MAT-
LAB® kernel probability density functions for modeling
the amount of time a thread takes to complete a copy,
compute, or update operation. These distributions may
be used in the simulation framework as an input parame-
ter, for the generation of random variables corresponding
to key operational times in the HPC architecture. Algo-
rithm 2 demonstrates the use of a time distribution in the
framework. Thread counts of 11, 21, 41, 81, 101, 201,
251, and 401 were used to collect data for the generation
of distributions, some of which are in Figure 7 and Fig-
ure 8. For 201 threads, Safe in Figure 7(d) and Figure
7(f) shows the tendency of locks to stratify copy and up-
date times, compared with Race in Figure 8(d) and Fig-
ure 8(f), which are less uniform. These findings are mir-
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Table 1. Mean times for copy, compute, and update operations.

Threads

Safe Race

Copy

(10−5s)

Compute

(10−4s)

Update

(10−6s)

Copy

(10−5s)

Compute

(10−4s)

Update

(10−6s)

11 1.28 167.00 7.76 1.15 167.00 2.79

21 1.31 84.30 6.98 1.17 83.60 1.96

41 1.38 43.00 7.09 1.23 43.10 1.63

81 2.98 27.30 20.60 1.43 27.20 1.79

101 36.70 23.40 357.00 1.64 25.20 1.79

201 251.00 15.30 2500.00 11.80 74.30 4.33

251 345.00 13.30 3440.00 16.60 90.90 4.55

401 1880.00 8.23 18,700.00 20.20 91.60 4.52

Algorithm 3 OpenMP Implementation 1 (a) SAFE

1: Input: , , initial guess for , , pro-
cessing elements

2: Output: Solution vector
3: Assign elements to processing el-

ements,
4: for parallel each processing element in

do
5: while residual norm tolerance do
6: COPY global from shared memory to

local
7: if then
8: Compute residual norm
9: else if then

10: for index do
11: Compute

12: end for

13: UPDATE in shared memory

with for all belonging to pro-
cessing element

14: end if
15: end while
16: end for

rored in Table 1, which provides mean times for each of

the three operations that were benchmarked in this im-
plementation, for Safe and Race. Race copy and update
times are slightly or significantly quicker than compara-
ble Safe times. Compute times typically dominate total
iteration time, except for Safe copy and update times for
threads 201, 251, and 401. Table 1 shows that increas-
ing the number of threads decreases Race copy, com-
pute, and update times until cores are sufficiently over-
subscribed: at 201 threads, these operations have become
significantly more costly, as compared with 101 threads.
This cost may be attributed to thread context switch-
ing. Compute times for Safe do not increase with higher
thread counts because thread behavior is controlled ex-
plicitly using locks. These statistics can be used to val-
idate the performance of the time distributions, so that
the framework provides results comparable to the HPC
hardware.

5.2 Implementation 2: Finite Difference Ja-
cobi Solver
This second implementation performs the Jacobi relax-
ation on the grid directly using the neighboring points
required by the 5-point stencil as opposed to explicitly
forming the matrix 𝐴, and in a sense implements a ma-
trix-free solution. For this implementation, the Laplacian
was discretized over a 600 × 600 grid with boundary
conditions set according to Table 2.

The implementation used here stems from code pro-
vided by (Hager & Wellein, 2010); similar code solves
a three dimensional discretization of the Laplacian in
the study featured in (Bethune, Bull, Dingle, & Higham,
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(a) 𝑥 copy, 11 threads. (b) 𝑥 compute, 11 threads. (c) 𝑥 update, 11 threads.

(d) 𝑥 copy, 81 threads. (e) 𝑥 compute, 81 threads. (f) 𝑥 update, 81 threads.

(g) 𝑥 copy, 201 threads. (h) 𝑥 compute, 201 threads. (i) 𝑥 update, 201 threads.

Figure 7. Safe copy, compute, and update histograms with kernel fits.

2011) and (Bethune, Bull, Dingle, & Higham, 2014).
The routine solves a heat diffusion problem, in which
a two-dimensional heated plate has Dirichlet boundary-
condition temperatures. Two matrices, 𝑢0 and 𝑢1, store
grid point values that each thread reads, e.g., from 𝑢1, to
compute newer values to write, e.g., to 𝑢0. As the method
is asynchronous, each thread independently determines
which matrix stores its newer 𝑢(𝑡+1)(𝑖, 𝑗) values and older
𝑢(𝑡)(𝑖, 𝑗) values. For an 𝑁 + 2 by 𝑁 + 2 grid, each thread
solves for 𝑁2 grid points divided by 𝑛 processing ele-
ments, such that the grid is evenly divided along the y-
axis. When a thread copies grid point values above or

below its domain for the computation, OpenMP® locks
are employed to ensure that data is safely captured from
a single iteration. Further, locks are used when updating
values on domain boundaries. Each thread 𝑝𝑛 computes
its local residual value every 𝑘th iteration, which it con-
tributes to the global residual value using an OpenMP®

atomic operation, such that it adds the local residual
from the current iteration and subtracts the local residual
from the previous iteration. A single thread checks for
convergence with an atomic capture operation, and up-
dates a shared flag variable if the criterion is satisfied.
Pseudocode for this implementation is provided in Algo-
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(a) 𝑥 copy, 11 threads. (b) 𝑥 compute, 11 threads. (c) 𝑥 update, 11 threads.

(d) 𝑥 copy, 81 threads. (e) 𝑥 compute, 81 threads. (f) 𝑥 update, 81 threads.

(g) 𝑥 copy, 201 threads. (h) 𝑥 compute, 201 threads. (i) 𝑥 update, 201 threads.

Figure 8. Race copy, compute, and update histograms with kernel fits.

rithm 4, where bold upper-case text indicates that Open-
MP® locks are employed. Locks are used only with in-
terior boundary rows, meaning they are unnecessary for
the first and last rows in the domain.

In this implementation, data was collected only for
the time to complete an iteration. Thread counts of 10,
25, 50, 75, 100, and 150 were used in these series of ex-
periments. The average total iteration time for the vary-
ing.

Figure 9 provides histograms and kernel fits for each
of the thread counts. Table 3 and Figure 9 show that with
increasing thread count, mean iteration time decreases,

but iteration times variance increases. This increase in it-
eration time variation may result from increased oppor-
tunities for lock collisions with greater thread counts.

Since this implementation is even more compute
bound than the first one, Table 3 shows a general de-
crease in the time for each iteration as the thread count
is increased. While there is no inflection point evident
in the data presented in Table 3, compared to Race in
Table 1, Table 3 still suggests that once the number of
threads outnumbers physical cores, performance gains
diminish. For denser matrices, or for different applica-
tions on different systems, these trends could change as
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Algorithm 4 OpenMP Implementation 2

1: Input: Initial guess for , processing elements
2: Output: Solution vector
3: Assign rows to each processing element,
4: for parallel each processing element in do
5: while residual norm tolerance do
6: for row index do
7: if AND OR then
8: COPY neighbor or boundary row values for
9: end if

10: Compute

11: if AND OR then

12: UPDATE own boundary row values in shared memory with

13: end if
14: end for
15: end while
16: end for

the memory-based activities become relatively more ex-
pensive. The finite difference discretization of the Lapla-
cian is a very sparse matrix that does not require much
data movement.

5.3 Implementation Comparison
The Safe variant of the first implementation incurs sig-
nificant overhead costs for 𝑥 copy and update operations,
as thread count increases, because each thread must copy
the entire 𝑥 vector. In the second implementation, data
shared between threads is differentiated and specific to
domain location; therefore, specific locks may be used
when copying and updating segments of the subdomain.
Assuming an appropriate number of processing elements
for a given grid, i.e., a thread has significantly more mid-

dle rows than boundary rows, copy operations, and the
associated variability and costs, are minimal compared
with compute operations. The Race implementation of
the general solver eliminates much of the overhead cost
from mutex locks, and convergence time is satisfacto-
ry for the given system. Implementation 2 is more con-
strained than Implementation 1, generalizing only to fi-
nite difference discretizations of partial differential equa-
tions over rectangular grids. Implementation 1 general-
izes further to any sparse matrix, 𝐴 with which the Ja-
cobi method can be used. According to Theorem 1, con-
vergence will occur if the spectral radius of the iteration
matrix, 𝐶, is less than 1. In the case of the Jacobi method,
the iteration matrix is given by

Table 2. Boundary conditions
for the second implementation
of the Laplacian.

0 100 … … 100 0

75 XXX … … XXX 50

⋮ XXX … … XXX ⋮

⋮ XXX … … XXX ⋮

75 XXX … … XXX 50

0 0 … … 0 0
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(a) 10 threads. (b) 25 threads. (c) 50 threads.

(d) 75 threads. (e) 100 threads. (f) 150 threads.

Figure 9. Iteration time histograms with kernel fits.

Note that in the two dimensional discretization of the
Laplacian, the spectral radius of the Jacobian is less
than l, which says that both the synchronous and asyn-

chronous variants of the Jacobi algorithm will converge.
Note Race behavior is unknown for different problems
and HPC systems.

The purpose of the two distinct implementations is to
emphasize that the simulation framework proposed here

Table 3. Mean iteration time
and standard deviation by
thread count.

Threads
Mean

(10−5s)

Std.

(10−6s)

10 8.86 3.87

25 3.92 2.08

50 2.55 2.34

75 2.53 5.80

100 2.61 5.95

150 2.64 5.76
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Table 4. Comparisons of run times
between parallel executions and sim-
ulation.

Thread

Count

Run

Average (s)

Simulation

Average (s)

11 0.01 0.01

21 0.02 0.02

41 0.04 0.04

51 0.04 0.05

81 0.09 0.09

101 0.12 0.12

201 0.34 0.35

can adapt to the behavior of different problems and plat-
forms. The framework may be apdapted to any asyn-
chronous iterative method through the process of collect-
ing data representative of individual update times and us-
ing the resultant data to model the system in the frame-
work.

5.4 Framework Validation
To validate the performance of the simulation framework
when initialized with appropriate distributions, a case
study utilizing output from Implementation 1 (see Sec-
tion 5.1 for details) was considered. Data was collected
for a smaller problem size only in order to facilitate the
collection of data over a large number of runs. Specifi-
cally, the Laplacian was discretized over a 20 × 20 grid
resulting in a matrix of size 400 × 400. Similarly to the
process in Section 5.1, distributions were fit to the out-
put of the OpenMP® implementation, and these distri-
butions were used in the simulation framework to pro-
vide update times to the simulated processors that are re-
flective of the HPC hardware that the data was collect-
ed on. Output from the average of these runs is provided
in Table 4. The leftmost column provides the number of
threads that were used (or simulated), the middle column
shows the average over multiple runs of the parallel im-
plementation, and the rightmost column shows the aver-
age over multiple runs of the simulation generated by the
simulation framework. In the case of this small problem,
the similarity of actual and simulated run times helps
to validate the model. Running multiple trials of larger
problems in the framework is currently time-prohibitive,
which is an issue that may be improved with framework
implementation changes. Future work includes model

validation for other problems and larger problems.

6 Framework Extension for Fault-Toler-
ance Requirements
The modular nature of this framework allows for extra
functionality to be easily added to the framework itself
that can be used to adapt the base algorithm to suit a
specific set of requirements. With the projected increase
of faults (see the references in Section 2), development
of fault tolerant algorithms is an important endeavor. A
block diagram showing the additional functionality deal-
ing with fault-tolerance is shown in Figure 10. The new
functionality is achieved by passing in another function
handle that performs the fault tolerance check and recov-
ery work.

The contents of the newly added Fault tolerance
check module may be organized as follows: Each proces-
sor makes a call to find the global residual and rolls the
state back to the previous known good state if the behav-
ior of the residual is not as expected. See Section 6.2 for
more details. Note that this strategy is not being advocat-
ed for due to its optimality, but is being shown as an ex-
ample of how to extend the framework for algorithm de-
velopment. Techniques such as monitoring the progres-
sion of the component-wise residuals (e.g., (Anzt, Don-
garra, & Quintana-Ortí, 2015; Anzt, Dongarra, & Quin-
tana-Ortí, 2016)) or only rolling back portions of the
state vector (e.g., (Coleman & Sosonkina, 2017; Cole-
man & Sosonkina, 2018)) would probably be more com-
putationally efficient.
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6.1 Fault Model
For this part of the study, faults are modeled as per-
turbations similar to several recent studies (Coleman &
Sosonkina, 2016b; Coleman, Sosonkina, & Chow, 2017;
Stoyanov & Webster, 2015); the goal being producing
fault tolerant algorithms for future computing platforms
that are not too dependent on the precise mechanism of
a fault (e.g., bit flip). Modifying the perturbation-based
fault model described in (Coleman, Sosonkina, & Chow,
2017), a single data structure is targeted and a small ran-
dom perturbation is injected into each component tran-
siently. For example, if the targeted data structure is a
vector 𝑥 and the maximum size of the perturbation-based
fault is ε then proceed as follows: sample a random num-
ber 𝑟𝑖 ∈ (-ε, ε) , using a uniform distribution, and then
set

for all values of 𝑖. The resultant vector is then per-
turbed away from the original vector 𝑥. Other similar
perturbation-based fault models have sampled the com-
ponents 𝑟𝑖 from different ranges. This can allow the cre-
ation of scenarios where some components are perturbed
by large amounts, and some are only changed incremen-
tally.

In this study, faults are injected into the asynchro-
nous Jacobi algorithm following the perturbation based
methodology described above. Due to the relatively
short execution time of the asynchronous Jacobi algo-
rithm on the given test problems, a fault is induced only

once during each run, and the fault is designated to occur
at a random iteration number before convergence. To be
precise — since "iteration" loses some meaning in an
asynchronous iterative algorithm — the fault is injected
on a single simulated time before the algorithm termi-
nates. It is not necessary for the program to have an up-
date scheduled on the same simulated time for the fault
to be injected.

6.2 Experiments with the Fault-Tolerance
Module
Similar to the earlier results in the paper, this study cov-
ers the solution of the linear system resulting from a two-
dimensional finite difference discretization of the Lapla-
cian. Before presenting simulation results, it is important
to note that faults, as modeled here, will not prevent the
eventual solution of the linear system using the (asyn-
chronous) Jacobi method. Since the spectral radius of the
associated iteration matrix is strictly less than 1, it will
converge for any initial guess 𝑥(0).

Since faults are assumed to only affect the memory
storing the vector 𝑥 and are assumed to occur in a tran-
sient manner, if a fault occurs on iteration 𝐹 then the sub-
sequent iterate, 𝑥(𝐹+1) can be taken to be the new starting
iterate and eventual convergence is guaranteed due to the
iteration matrix which has remained the same through-
out the occurrence of the fault. This model can reflect
the scenario where certain parts of the routine are desig-
nated to run on hardware with a higher reliability thresh-
old, and other parts of the algorithm are allowed to run
on hardware that may be more susceptible to the occur-

Figure 10. Block diagram of the simulation framework with added support for fault tolerance mechanisms.
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Algorithm 5 Asynchronous Jacobi simulation with checkpointing
1: Input: ; initial guess ; number of processing elements ; input random number distribution;

checkpointing tolerance ; checkpointing frequency
2: Output: Solution vector
3: Assign processor update times by sampling from an appropriate random number distribu-

tion
4: Assign a part of to each processing element
5: Initialize to a large value
6: for , until convergence do
7: for each processing element, do
8: if then
9: for each element assigned to do

10:

11: end for
12: Retrieve a new update time by sampling from the input distribution
13: end if
14: end for
15: Inject a fault if appropriate
16: Calculate the residual as in Equation (3)
17: if then
18:

19: end if
20: if then
21:

22: end if
23: Check termination conditions
24: end for

rence of a fault. This sandbox type design has been sug-
gested as a possible means for providing energy efficient
fault tolerance on future HPC environments (Bridges,
Ferreira, Heroux, & Hoemmen, 2012; Hoemmen & Her-
oux, 2011; Sao & Vuduc, 2013).

While eventual convergence may be guaranteed,
greatly accelerated convergence is possible through a
simple checkpointing scheme. An example of such a
scheme (as an extension of the asynchronous Jacobi sim-
ulation provided by Algorithm 2) is provided in Algo-
rithm 5.

Note that the asynchronous nature of the iterative
method means that a strict check on the decrease of the
residual (i.e., expecting monotonic decrease) is not pos-
sible. In particular, the checkpointing tolerance α needs
to be taken such that α > 1. However, the expected man-
ifestation of faults as rare, transient events allows α to
be taken fairly large. Taking α too large results in a fault
having a substantial impact on the convergence rate of
algorithm since large faults will be allowed to impact the
algorithm with no correction. Conversely, taking α too
small causes the algorithm to checkpoint more frequent-

ly than needed. Examples of the effects of a fault with
different values selected for α are given by Figure 11.

Note in Figure 11 that no checkpointing results in a
delay to convergence relative to the use of checkpointing
with either α = 1 or α = 10. The size of the fault selected
in this study, 𝑟𝑖 ∈ (-100, 100) , which may be reflective
of an exponent or sign bit flip (Coleman & Sosonkina,
2018), results in the values α = 1 and α = 10 having the
same performance since the error induced by the fault is
sufficiently large that the new residual is more than α =
10 times the prior residual. Faults that induce a smaller
error may be detected by certain values of α and not by
others which would lead to differing performance.

The residual progress in the plot showing the effects
of using α = 1 can be explained by the updates provided
by certain simulated processing elements being rejected
despite being necessary for the convergence of the algo-
rithm. This can be seen in the small, momentary jumps
in the progression of the residual visible in the other
graphs. These rejections lead to stagnation in the pro-
gression of the algorithm and show why the value of α =
1 should not be selected for a checkpointing scheme for
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(a) Effect of fault — no checkpointing. (b) Effect of fault — α = 1.

(c) Effect of fault — α = 2. (d) Effect of fault — α = 10.

Figure 11. Effect of differing values of α on the progression of the residual.

an asynchronous iterative method.

7 Conclusions and Future Work
This work has developed a framework that can be used
to efficiently simulate the outcomes of asynchronous
methods for future High Performance Computing envi-
ronments. Given that asynchronous methods are notori-
ously difficult to study theoretically, their simulation is
an invaluable tool for observing behavior and making
quantitative and qualitative assertions. The modular and
extensible nature of the framework proposed here allows
for easy experimentation with modifications to a popular
class of algorithms that finds uses in many areas of sci-
ence and engineering.

The work presented was designed to show the ability

of the framework to adapt to new algorithm variants,
such as those capable of handling algorithm recovery in
the presence of transient soft faults as was shown by ex-
ample in Section 6.2.

The simulation framework presented here is extensi-
ble and flexible and is able to:

1. admit a variety of asynchronous methods (i.e., be-
yond the simple Jacobi algorithm)

2. incorporate different fault models and recovery
techniques for the development of fault tolerant al-
gorithms, and

3. vary hardware parameters such as thread and
processor counts and the performance of those pa-
rameters as governed by the timing distributions
that are supplied.
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In the future, the most obvious extension of the simu-
lation framework is to add modules that allow it to be
accurately used for experiments on either distributed or
cloud-based computing environments. Additionally, it is
planned to add features for optimization that could al-
low for the automation of the selection of the check-
pointing tolerance as well as checkpointing frequency in
the course of simulation. Adding the capability for the
framework to take a range of parameters and find opti-
mal values without direct input from the user could aid
in the development of algorithms. Furthermore, the sim-
ulation framework is intended to be augmented with run-
time simulation measurements, such those provided by
Intel® Running Average Power Limit (RAPL) interface
(Intel, 2016), to obtain simulated application execution
traces in order to model application performance and en-
ergy consumption.
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