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Abstract
In simulation engineering, a system model mainly consists of an information model describing a system's state
structure and a process model describing its dynamics. In the fields of Information Systems and Software Engi-
neering, there are widely used standards such as the Class Diagrams of the Unified Modeling Language (UML)
for making information models, and the Business Process Modeling Notation (BPMN) for making process models.
This tutorial presents a general Object Event Modeling (OEM) approach for Discrete Event Simulation modeling
using UML class diagrams and BPMN-based process diagrams at all three levels of model-driven simulation engi-
neering: for making conceptual domain models, for making platform-independent simulation design models, and
for making platform-specific, executable simulation models. In this approach, object and event types are modeled
as special categories of UML classes, random variables are modeled as a special category of UML operations con-
strained to comply with a specific probability distribution, and queues are modeled as ordered association ends,
while event rules are modeled both as BPMN-based process diagrams and pseudo-code. In Part II, we discuss the
more advanced OEM concepts of activities and GPSS/SIMAN/Arena-style Processing Networks. Finally, in Part
III, we further extend the OEM paradigm towards agent-based modeling and simulation by adding the concepts
of agents with perceptions, actions and beliefs.

1 Introduction
The term simulation engineering denotes the scientific
engineering discipline concerned with the develop-
ment of computer simulations, which are a special
class of software applications. Since a running com-
puter simulation is a particular kind of software sys-
tem, we may consider simulation engineering as a spe-
cial case of software engineering.

Although there is a common agreement that mod-
eling is an important first step in a simulation project,
it is also thought to be the least understood part of
simulation engineering (Tako, Kotiadis, & Vasilakis,
2010). In a panel discussion on conceptual simulation
modeling (Zee et al., 2010), the participants agreed
that there is a lack of “standards, on procedures, nota-
tion, and model qualities”. On the other hand, there is
no such lack in the field of Information Systems and
Software Engineering (IS/SE) where standards such as
the Unified Modeling Language (UML) and the Busi-
ness Process Modeling Notation (BPMN) have been
widely adopted, and various modeling methodologies
and model quality assurance methods have been estab-
lished.

The standard view in the simulation literature, see,

e.g., (Himmelspach, 2009), is that a simulation model
can be expressed either in a general purpose program-
ming language or in a specialized simulation language.
However, the term “model” in simulation model typ-
ically refers to a low-level computer program rather
than a higher-level representation expressed in a di-
agrammatic modeling language. In a modeling and
simulation project, despite the fact that “modeling” is
part of the discipline’s name, often no information or
process models are produced, but rather the modeler
jumps from her mental model to its implementation in
some target technology platform. Clearly, as in IS/SE,
making conceptual models and design models is im-
portant for several reasons: as opposed to a low-level
computer program, a high-level model is more com-
prehensible and easier to communicate, share, reuse,
maintain and evolve. Furthermore, it can also be used
for obtaining platform-specific implementation code,
possibly with the help of model transformations and
code generation.

Due to their expressiveness and wide adoption as
modeling standards, UML and BPMN seem the most
appropriate choices as information and process model-
ing languages for a model-based simulation engineer-
ing approach. However, since they have not been de-
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signed for this purpose, we may have to restrict, mod-
ify and extend them in a suitable way.

Several authors, e.g., (Wagner, Nicolae, & Werner,
2009), (Cetinkaya, Verbraeck, & Seck, 2011), and
(Onggo & Karpat, 2011), have proposed to use BPMN
for Discrete Event Simulation (DES) modeling and
for agent-based modeling. However, process modeling
in general is much less understood than information
modeling, and there are no guidelines and no best
practices how to use BPMN for simulation modeling.
Schruben (1983), with his Event Graph diagram lan-
guage, has pioneered the research on process modeling
languages for DES based on the modeling concept of
event types and the operational semantics concept of
event scheduling with a future events list. Remark-
ably, Event Graphs correspond to a fragment of BPMN
(without Activities and Pools), which indicates the po-
tential of BPMN as a basis of a general process mod-
eling language for DES.

This tutorial article extends and improves the mod-
eling approach presented in (Wagner, 2017b). In par-
ticular, the BPMN-based process design modeling ap-
proach has been revised and refined by using a variant
of BPMN, called Discrete Event Process Modeling
Notation (DPMN), which is discussed in Section 5.

This first part of the tutorial presents the Object-
Event Modeling (OEM) paradigm and an OEM ap-
proach for developing basic discrete event simulations.
First, short introductions to model-driven engineering,
to information modeling with UML class diagrams,
and to process modeling with BPMN and DPMN
process diagrams are presented. Next, two examples
are provided to illustrate how to apply the OEM para-
digm to developing discrete event simulations. In Part
II of this tutorial, we discuss the more advanced mod-
eling concepts of activities and GPSS/SIMAN/Arena-
style Processing Networks where work objects “flow
through the system” by entering it through an arrival
event at an entry node, then passing one or more pro-
cessing nodes, where processing activities are being
performed, and finally leaving it through a departure
event at an exit node. Finally, Part III will show how to
add the modeling concepts of agents with perceptions,
actions and beliefs, resulting in a general agent-based
DES modeling framework.

In the OEM paradigm, the relevant object types
and event types are described in an information model,
which is the basis for making a process model. A
modeling approach that follows the OEM paradigm is
called an OEM approach. Such an approach needs to
choose, or define, an information modeling language
and a process modeling language. Possible choices
are Entity Relationship Diagrams or UML Class Di-
agrams for information modeling, and UML Activity
Diagrams or BPMN Process Diagrams for process
modeling.

We propose an OEM approach based on UML
Class Diagrams for conceptual information modeling
and information design modeling, as well as BPMN

Process Diagrams for conceptual process modeling
and DPMN Process Diagrams for process design mod-
eling. In the proposed approach, object types and event
types are modeled as special categories of classes in a
UML Class Diagram. Random variables are modeled
as a special category of class-level operations con-
strained to comply with a specific probability distribu-
tion such that they can be implemented as static meth-
ods of a class. Queues are not modeled as objects, but
rather as ordered association ends, which can be im-
plemented as collection-valued reference properties.
Finally, event rules, which include event routines, are
modeled both as BPMN/DPMN process diagrams and
in pseudo-code such that they can be implemented in
the form of special onEvent methods of event classes.

An OEM approach results in a simulation design
model that has a well-defined operational semantics,
as shown in (Wagner, 2017a). Such a model can, in
principle, be implemented with any object-oriented
(OO) simulation technology. However, a straightfor-
ward implementation can only be expected from a
technology that implements the Object-Event Simu-
lation (OES) paradigm proposed in (Wagner, 2017a),
such as the OES JavaScript (OESjs) framework pre-
sented in (Wagner, 2017c).

There are two examples of systems, which are par-
adigmatic for DES (and for operations research): ser-
vice/processing systems with queues (also called
“queuing networks”) and inventory management sys-
tems. However, neither of them has yet been presented
with elaborate information and process models in tu-
torials or textbooks. In this tutorial, we show how to
make information and process models of an invento-
ry management system and of a service system, and
how to code them using the JavaScript-based simula-
tion framework OESjs.

2 What Is Discrete Event Simulation?
The term Discrete Event Simulation (DES) has been
established as an umbrella term subsuming various
kinds of computer simulation approaches, all based
on the general idea of modeling entities/objects and
events. In the DES literature, it is often stated that DES
is based on the concept of “entities flowing through
the system” (more precisely, through a “queueing net-
work”). This is the paradigm of an entire class of sim-
ulation software in the tradition of GPSS (Gordon,
1961) and SIMAN/Arena (Pegden & Davis, 1992).
However, this paradigm characterizes a special (yet
important) class of DES only, it does not apply to all
discrete dynamic systems.

In Ontology, which is the philosophical study of
what there is, entities (also called individuals) are dis-
tinguished from entity types (called universals). There
are three fundamental categories of entities:

1. objects ,
2. tropes , which are existentially dependent entities

such as the qualities and dispositions of objects
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and their relationships with each other, and
3. events .

These ontological distinctions are discussed, e.g., by
Guizzardi and Wagner (2010a, 2010b, 2013).

While the concept of an event is often limited to
instantaneous events in the area of DES, the general
concept of an event, as discussed in philosophy and in
many fields of computer science, includes composite
events and events with non-zero duration.

A discrete event system (or discrete dynamic sys-
tem) consists of

• objects (of various types) having a state (consist-
ing of qualities) and dispositions,

• events (of various types) triggering certain dispo-
sitions of objects participating in them,

such that the states of affected objects may be changed
by events according to the dispositions triggered by
them. It is natural to consider the concept of discrete
events, occurring at times from a discrete set of time
points.

For modeling a discrete event system as a state
transition system, we have to describe its

1. object types , e.g., in the form of classes of an ob-
ject-oriented language;

2. event types , e.g., in the form of classes of an ob-
ject-oriented language;

3. causal regularities (disposition types) e.g., in the
form of event rules.

Any DES formalism has one or more language ele-
ments that allow specifying event rules representing
causal regularities. These rules specify, for any event
type, the state changes of objects and the follow-up
events caused by the occurrence of an event of that
type, thus defining the dynamics of the transition sys-
tem. Unfortunately, this is often obscured by the stan-
dard definitions of DES that are repeatedly presented
in simulation textbooks and tutorials.

According to Pegden (2010), a simulation model-
ing worldview provides “a framework for defining a
system in sufficient detail that it can be executed to
simulate the behavior of the system”. It “must pre-
cisely define the dynamic state transitions that occur
over time”. Pegden explains that the 50 year history
of DES has been shaped by three fundamental par-
adigms: Markowitz, Hausner, and Karr (1962) pio-
neered the event worldview with SIMSCRIPT, Gordon
(1961) pioneered the processing network worldview
with GPSS, and Dahl and Nygaard (1966) pioneered
the object worldview with Simula. Pegden character-
izes these paradigms in the following way:

Event worldview: The system is viewed as a series
of instantaneous events that change the state of the sys-
tem over time. The modeler defines the events in the
system and models the state changes that take place
when those events occur. According to Pegden, the
event worldview is the most fundamental worldview

since the other worldviews also use events, at least im-
plicitly.

Processing Network worldview: The system under
investigation is described as a processing network
where “entities flow through the system” (or, more
precisely, work objects are routed through the net-
work) and are subject to a series of processing steps
performed at processing nodes through processing ac-
tivities, possibly requiring resources and inducing
queues of work objects waiting for the availability
of resources (processing networks have been called
“queueing networks” in Operations Research). This
approach allows high-level modeling with semi-visual
languages and is therefore the most widely used DES
approach nowadays, in particular in manufacturing in-
dustries and service industries. Simulation platforms
based on this worldview may or may not support ob-
ject-oriented modeling and programming.

Object worldview: The system is modeled by de-
scribing the objects that make up the system. The sys-
tem behavior emerges from the “interaction” of these
objects.

All three worldviews lack important conceptual el-
ements. The event worldview does not consider ob-
jects with their (categorical and dispositional) proper-
ties. The processing network worldview neither con-
siders events nor objects. And the object worldview,
while it considers objects with their categorical prop-
erties, does not consider events. None of the three
worldviews includes modeling the dispositional prop-
erties of objects with a full-fledged explicit concept of
event rules.

The event worldview and the object worldview can
be combined in approaches that support both objects
and events as first-class citizens. This seems highly de-
sirable because (1) objects (and classes) are a must-
have in today’s state-of-the-art modeling and program-
ming, and (2) a general concept of events is funda-
mental in DES, as demonstrated by the classical event
worldview. We use the term object-event worldview
for any DES approach combining OO modeling and
programming with a general concept of events.

3 Model-Driven Engineering
Model-Driven Engineering (MDE), also called model-
driven development, is a well-established paradigm in
IS/SE. Since simulation engineering can be viewed as
a special case of software engineering, it is natural to
apply the ideas of MDE also to simulation engineer-
ing. There have been several proposals of using an
MDE approach in Modeling and Simulation (M&S),
see, e.g., the overview given in (Cetinkaya & Ver-
braeck, 2011).

In MDE, there is a clear distinction between three
kinds of models as engineering artifacts created in the
analysis, design and implementation phases of a devel-
opment project:

1. domain models (also called conceptual models),
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Different 
Platforms

Different 
Solutions 
(Design 
Choices)

Conceptual 
Model

Implementation 
Model 1-1

Design Model 1

Design Model 2

Implementation 
Model 1-2

Implementation 
Model 1-3

Implementation 
Model 2-1

Figure 1. From a conceptual model via design models to implementation models.

which are solution-independent,
2. design models, which represent platform-inde-

pendent solution designs,
3. implementation models, which are platform-spe-

cific.

Domain models are solution-independent descriptions
of a problem domain produced in the analysis phase.
We follow the IS/SE usage of the term “conceptual
model” as a synonym of “domain model”. However,
in the M&S literature there are diverging proposals
how to define the term “conceptual model”, see, e.g.,
(Guizzardi & Wagner, 2012) and (Robinson, 2013).
A domain model may include both descriptions of
the domain’s state structure (in conceptual information
models) and descriptions of its processes (in conceptu-
al process models). They are solution-independent, or
“computation-independent”, in the sense that they are
not concerned with making any system design choices
or with other computational issues. Rather, they focus
on the perspective and language of the subject matter
experts for the domain under consideration.

In the design phase, first a platform-independent
design model, as a general computational solution, is
developed on the basis of the domain model. The same
domain model can potentially be used to produce a
number of (even radically) different design models.
Then, by taking into consideration a number of im-
plementation issues ranging from architectural styles,
nonfunctional quality criteria to be maximized (e.g.,
performance, adaptability) and target technology plat-
forms, one or more platform-specific implementation
models are derived from the design model. These one-
to-many relationships between conceptual models, de-
sign models and implementation models are illustrated
in Figure 1.

In the implementation phase, an implementation
model is coded in the programming language of the
target platform. Finally, after testing and debugging,

the implemented solution is then deployed in a target
environment.

A model for a software (or information) system,
which may be called a “software system model”, does
not consist of just one model diagram including all
viewpoints or aspects of the system to be developed
(or to be documented). Rather it consists of a set of
models, one (or more) for each viewpoint. The two
most important viewpoints, crosscutting all three mod-
eling levels: domain, design and implementation, are

1. information modeling , which is concerned with
the state structure of the domain, design or im-
plementation;

2. process modeling , which is concerned with the
dynamics of the domain, design or implementa-
tion.

In the computer science field of database engineering,
which is only concerned with information modeling,
domain information models have been called “concep-
tual models”, information design models have been
called “logical design models”, and database imple-
mentation models have been called “physical design
models”. Information implementation models are
called data models or class models. So, from a given
information design model, we may derive an SQL data
model, a Java class model and a C# class model.

Examples of widely used languages for informa-
tion modeling are Entity Relationship (ER) Diagrams
and UML Class Diagrams. Since the latter subsume
the former, we prefer using UML class diagrams for
making all kinds of information models, including
SQL database models.

Examples of widely used languages for process
modeling are (Colored) Petri Nets, UML Sequence Di-
agrams, UML Activity Diagrams and the BPMN. No-
tice that there is more agreement on the right con-
cepts for information modeling than for process mod-
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1..*

mother 1

+getSSN() : Integer
+setSSN(in ssn : Integer)
+getName() : String
+setName(in n : String)
+get...()
+set...()
+getAge() : Integer

-ssn : Integer {id}
-name : String
-dateOfBirth : Date
-income : Decimal
-mother : Person

Person

Conceptual 
Information Model

OO Class Model

getAge() : Integer

ssn : Integer {id}
name : String
dateOfBirth : Date
income : Decimal

Person

1..*

mother 1

Information Design 
Model

+getSsn() : int
+setSsn(in ssn : int)
+getName() : string
+setName(in name : string)
+get...()
+set...()
+getAge() : int

-ssn : int {id}
-name : string
-dateOfBirth : date
-income : double
-mother : Person*

Person

C++ Class Model

Figure 2. From a conceptual information model via a design model to OO and C++ class models.

eling, as indicated by the much larger number of dif-
ferent process modeling languages. We claim that this
reflects a lower degree of understanding the nature of
events and processes compared to understanding ob-
jects and their relationships.

Some modeling languages, such as UML Class Di-
agrams and BPMN, can be used on all three modeling
levels in the form of tailored variants. Other languages
have been designed for being used on one or two of
these three levels only. For instance, Petri Nets cannot
be used for conceptual process modeling, since they
lack the required expressiveness.

We illustrate the distinction between the three
modeling levels with an example in Figure 2. In a sim-
ple conceptual information model of people, expressed
as a UML class diagram, we require that any person
has exactly one mother, expressed by a correspond-
ing binary many-to-one association, while we repre-
sent this association with a corresponding reference
property mother in the OO and C++ class models. Al-
so, we may not care about the datatypes of attributes
in the conceptual model, while we do care about them
in the design model, where we use platform-indepen-
dent datatype names (such as Decimal ), and in the
C++ class model where we use C++ datatypes (such as
double ). Following OO programming conventions,
we add get and set methods for all attributes, and we
specify the visibility private (symbolically -) for attrib-
utes and public (symbolically +) for methods, in the
OO class model. Finally, in the C++ class model, we
use the pointer type Person* instead of Person for
implementing a reference property.

Model-driven simulation engineering is based on
the same kinds of models as model-driven software
engineering: going from a domain model via a design
model to an implementation model for the simulation
platform of choice (or to several implementation mod-
els if there are several target simulation platforms).
The specific concerns of simulation engineering, like,
e.g., the concern to capture certain parts of the overall
system dynamics with the help of random variables, do

not affect the applicability of MDE principles. How-
ever, they define requirements for the modeling lan-
guages to be used.

4 Information Modeling with UML
Class Diagrams
Conceptual information modeling is mainly concerned
with describing the relevant entity types of a real-
world domain and the relationships between them,
while information design and implementation model-
ing is concerned with describing the logical (or plat-
form-independent) and platform-specific data struc-
tures (in the form of classes) for designing and im-
plementing a software system or simulation. The most
important kinds of relationships between entity types
to be described in an information model are associa-
tions, which are called “relationship types” in ER mod-
eling, and subtype/supertype relationships, which are
called “generalizations” in UML. In addition, one may
model various kinds of part-whole relationships be-
tween different kinds of aggregate entities and compo-
nent entities, but this is an advanced topic that is not
covered in this tutorial.

As explained in the introduction, we are using the
visual modeling language of UML Class Diagrams
for information modeling. In this language, an entity
type is described with a name, and possibly with a
list of properties and operations (called methods when
implemented), in the form of a class rectangle with
one, two or three compartments, depending on the
presence of properties and operations. Integrity con-
straints, which are conditions that must be satisfied
by the instances of a type, can be expressed in special
ways when defining properties or they can be explicit-
ly attached to an entity type in the form of an invariant
box.

An association between two entity types is ex-
pressed as a connection line between the two class rec-
tangles representing the entity types. The connection
line is annotated with multiplicity expressions at both
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ends. A multiplicity expression has the form m..n
where m is a non-negative natural number denoting the
minimum cardinality, and n is a positive natural num-
ber (or the special symbol * standing for unbounded)
denoting the maximum cardinality, of the sets of as-
sociated entities. Typically, a multiplicity expression
states an integrity constraint. For instance, the multi-
plicity expression 1..3 means that there are at least
1 and at most 3 associated entities. However, the spe-
cial multiplicity expression 0..* (also expressed as *
) means that there is no constraint since the minimum
cardinality is zero and the maximum cardinality is un-
bounded.

For instance, the model shown in Figure 3 de-
scribes the entity types Shop and Delivery, and it
states that

1. there are two classes: Shop and Delivery, rep-
resenting entity types;

2. there is a one-to-many association between the
classes Shop and Delivery, where a shop is
the receiver of a delivery.

Shop

receiver

1 *

Delivery

Figure 3. The entity types Shop and Delivery.

Using further compartments in class rectangles, we
can add properties and operations. For instance, in the
model shown in Figure 4, we have added

1. the properties name and stockQuantity to Shop
and quantity to Delivery,

2. the instance-level operation onEvent to Deliv-
ery,

3. the class-level operation leadTime to Delivery.

name : String
stockQuantity : Integer

Shop receiver

1 *
onEvent()
leadTime() : Decimal

quantity : Integer

Delivery

Figure 4. Adding properties and operations.

Notice that in Figure 4, each property is declared to-
gether with a datatype as its range. Likewise, opera-
tions are declared with a (possibly empty) list of para-
meters, and with an optional return value type. When
an operation (or property) declaration is underlined,
this means that it is class-level instead of instance-lev-
el. For instance, the underlined operation declaration
leadTime(): Decimal indicates that leadTime is
a class-level operation that does not take any argument
and returns a decimal number.

We may want to define various types of integrity
constraints for better capturing the semantics of entity
types, properties and operations. The model shown in
Figure 5 contains an example of a property constraint

and an example of an operation constraint. These types
of constraints can be expressed within curly braces
appended to a property or operation declaration. The
keyword id in the declaration of the property name in
the Shop class expresses an ID constraint stating that
the property is a standard identifier, or primary key, at-
tribute. The expression Exp(0.5) in the declaration
of the random variable operation leadTime in the
Delivery class denotes the constraint that the oper-
ation must implement the exponential probability dis-
tribution function with event rate 0.5.

name : String {id}
stockQuantity : Integer

Shop receiver

1 *
onEvent()
leadTime() : Decimal {Exp(0.5)}

quantity : Integer

Delivery

Figure 5. Adding a property constraint and an opera-
tion constraint.

UML allows defining special categories of modeling
elements called “stereotypes”. For instance, for distin-
guishing between object types and event types as two
different categories of entity types we can define cor-
responding stereotypes of UML classes («object type»
and «event type») and use them for categorizing class-
es in class models, as shown in Figure 6.

name : String {id}
stockQuantity : Integer

«object type»
Shop

receiver

1 * onEvent()
«rv» leadTime() : Decimal {Exp(0.5)}

quantity : Integer

«event type»
Delivery

Figure 6. Object and event types as two different cat-
egories of entity types.

Another example of using UML’s stereotype feature is
the designation of an operation as a function that rep-
resents a random variable using the operation stereo-
type «rv» in the diagram of Figure 6.

A class may be defined as abstract by writing its
name in italics, as in the example model of Figure 11.
An abstract class cannot have direct instances. It can
only be indirectly instantiated by objects that are direct
instances of a subclass.

For a short introduction to UML Class Diagrams,
the reader is referred to (Ambler, 2010). A good
overview of the most recent version of UML (UML
2.5) is provided by www.uml-diagrams.org/uml-25-di-
agrams.html

5 Process Modeling with BPMN and
DPMN
The Business Process Modeling Notation (BPMN) is
an activity-based graphical modeling language for
defining business processes following the flow-chart
metaphor. In 2011, the Object Management Group has
released version 2.0 of BPMN with an optional execu-
tion semantics based on Petri-net-style token flows.

The most important elements of a BPMN process
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Table 1. Basic elements of BPMN.

Name of
element

Meaning Visual symbol(s)

Event

Something that “happens” during the course of a
process, affecting the process flow.

A Start Event is drawn as a circle with a thin
border line, while an Intermediate Event has a dou-
ble border line and an End Event has a thick border
line.

Start Inter-
mediate

End

Activity

“Work that is performed within a Business
Process.”

A Task is an atomic Activity, while a Sub-
Process is a composite Activity. A Sub-Process can
be either in a collapsed or in an expanded view.
The latter shows its internal process structure.

Activity

Gateway

A Gateway is a node for branching or merging con-
trol flows. A Gateway with an "X" symbol denotes
an Exclusive OR-Split for conditional branching, if
there are 2 or more output flows, or an Exclusive
OR-Join, if there are 2 or more input flows. A
Gateway with a plus symbol denotes an AND-Split
for parallel branching, if there are 2 or more output
flows, or an AND-Join, if there are 2 or more input
flows. A Gateway can have both input and output
flows.

Sequence
Flow

An arrow expressing the temporal order of Events,
Activities, and Gateways. A Conditional Sequence
Flow arrow starts with a diamond and is annotated
with a condition (in brackets).

[condition]

Data Ob-
ject

Data Objects may be attached to Events or Activ-
ities, providing a context for reading/writing da-
ta. A unidirectional dashed arrow denotes reading,
while a bidirectional dashed arrow denotes read-
ing/writing.

Event

data object

model are listed in Table 1.
BPMN process diagrams can be used for making

1. conceptual process models , e.g., for document-
ing existing business processes and for designing
new business processes;

2. process automation models for specific process
automation platforms (that allow partially or fully
automating a business process) by adding plat-
form-specific technical details in the form of
model annotations that are not visible in the dia-
gram.

However, the BPMN process diagram language has
several semantic issues and is not expressive enough
for making platform-independent computational
process design models that can be used both for de-
signing DES models and as a general basis for deriving
platform-specific process automation models.

For an introductory BPMN tutorial, the reader is
referred to (BPMN 2.0 Tutorial, 2017). A good model-
ing tool, with the advantages of an online solution, is
the Signavio Process Editor, which is free for academ-
ic use.

Ontologically, BPMN activities (or, more precise-

Information and Process Modeling for Simulation – Part I

1:7 / 1:26

https://www.signavio.com/bpm-academic-initiative/


ly, activity types) are special event types. However, the
subsumption of activities under events is not support-
ed by the standard semantics of BPMN.

Another severe issue of the official BPMN (token
flow) semantics is its limitation to case handling
processes. Each start event represents a new case and
starts a new process for handling this case in isolation
from other cases. This semantics disallows, for in-
stance, to model processes where several cases are
handled in parallel and interact in some way, e.g., by
competing for resources. Consequently, this semantics
is inadequate for capturing the overall process of a
business system with many actors performing tasks re-
lated to many cases with various interdependencies, in
parallel.

Despite these issues, using BPMN as a basis for
developing a process design modeling approach is the
best choice of a modeling language we can make, con-
sidering the alternatives, which are either not well-de-
fined (like Flow Charts or “Logic Flow Diagrams”)
or not sufficiently expressive (Petri Nets, UML State
Transition Diagrams, UML Activity Diagrams).

We need to adapt the language of BPMN Process
Diagrams for the purpose of simulation design mod-
eling where a process model must represent a com-
putationally complete process specification. While we
can use large parts of its vocabulary, visual syntax
and informal semantics, we need to modify them for
a number of modeling elements. The resulting BPMN
variant, which is fully described in (Wagner, 2018),
is called Discrete Event Process Modeling Notation
(DPMN). It may be viewed as a BPMN-based gener-
alization of the Event Graph diagrams of (Schruben
1983).

DPMN adopts and adapts the syntax and semantics
of BPMN in the following way:

1. A DPMN diagram has an underlying UML class
diagram defining its (object and event) types.

2. DPMN Sequence Flow arrows pointing to an
event circle denote event scheduling control
flows. They must be annotated by event attribute
assignments for creating/scheduling a new event.

3. DPMN has three special forms of Text Annota-
tion:

1. Text Annotations attached to Event circles
for declaring event rule variables,

2. Text Annotations attached to Sequence Flow
arrows for state change statements,

3. Text Annotations attached to Sequence Flow
arrows pointing to Event circles for event at-
tribute assignments.

4. DPMN has an extended form of Data Object vi-
sually rendered as rectangles with two compart-
ments:

1. a first compartment showing an object vari-
able name and an object type name separat-
ed by a colon, together with a binding of the

object variable to a specific object;
2. a second compartment containing a block

of state change statements (such as attribute
value assignments).

5. BPMN's temporal semantics and visual syntax
distinction between Start, Intermediate and End
Events is dropped. A DPMN Event circle im-
plicitly represents a start (or end) Event when it
has no incoming (or outgoing) Sequence Flow ar-
rows. It represents an intermediate Event if it has
both incoming and outgoing Sequence Flow ar-
rows.

6. In a DPMN event rule design diagram, there is
exactly one start Event circle followed by zero or
more end Event circles, but there is no intermedi-
ate Event circle.

7. A DPMN process design diagram consists of an
integrated set of event rule design diagrams such
that its intermediate Event circles are semantical-
ly overloaded: in the context of an incoming Se-
quence Flow arrow they denote a scheduled event
to be added to the Future Events List (FEL), while
in the context of an outgoing Sequence Flow ar-
row or an attached Data Object, they denote an
event occurrence that causes state changes and
follow-up events. The scheduled event and the re-
sulting event occurrence could be separated by
drawing two event circles that are connected by a
Sequence Flow arrow denoting a wait-for control
flow.

8. The token flow semantics of BPMN is replaced
by the operational semantics of event rules de-
fined in (Wagner, 2017a).

A DPMN Event circle corresponds to an event type
of the underlying information design model and may
trigger both state changes, as specified in Data Object
rectangles attached to the Event circle, and follow-
up events, as specified by (possibly conditional) event
scheduling Sequence Flow arrows.

6 Example 1: An Inventory System
We consider a simple case of inventory management: a
shop selling one product type (e.g., one model of TVs),
such that its in-house inventory only consists of items
of that type. On each business day, customers come to
the shop and place their orders. If the ordered product
quantity is in stock, customers pay their order and the
ordered products are handed out to them. Otherwise,
the order may still be partially fulfilled, if there are still
some items in stock. If there are no items in stock, cus-
tomers have to leave the shop without any item.

When the stock quantity falls below the reorder
point, a replenishment order is sent to the vendor for
restocking the inventory, and the ordered quantity is
delivered 1–3 days later.

Below, a simulation of this system, based on
OESjs, can be run.
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6.1 Information Modeling
How should we start the information modeling
process? Should we first model object types and then
event types, or the other way around? Here, the right
order is dictated by informational dependencies. Since
events are always associated with objects that partic-
ipate in them, which is an ontological pattern that is
fundamental for DES, see, e.g., (Guizzardi & Wagner,
2010b), we first model object types, together with their
associations, and then add event types on top of them.

A conceptual information model describes the
subject matter vocabulary used, e.g., in the system nar-
rative, in a semi-formal way. Such a vocabulary essen-
tially consists of names for

1. types, corresponding to classes in OO modeling,
or unary predicates in formal logic;

2. properties, corresponding to binary predicates in
formal logic;

3. associations, corresponding to n-ary predicates
(with n > 1) in formal logic.

The main categories of types are object types and
event types. A simple form of conceptual information
model is obtained by providing a list of each of them,
while a more elaborated model, preferably in the form
of a UML class diagram, also defines properties and
associations, including the participation of objects (of
certain types) in events (of certain types).

An information design model is normally derived
from a conceptual information model by choosing the
design-relevant types of objects and events and enrich
them with design details, while dropping other object
types and event types not deemed relevant for the sim-
ulation design. Adding design details includes specify-
ing property ranges as well as adding multiplicity and
other types of constraints.

In addition to these general information modeling
issues, there are also a few issues, which are specific
for simulation modeling:

1. Due to the ontological pattern of objects partici-
pating in events , we always have special (partic-
ipation) associations between object classes and
event classes. Typically, they will have role
names at the association ends that touch the ob-
ject classes. These role names will be turned into
names of corresponding reference properties of
the event class in an OO class model, allowing
the event rule method onEvent to access the
properties of the objects participating in an event
both for testing conditions and for applying state
changes.

2. Certain simulation variables may be subject to
random variation, so they can be considered to be
random variables with an underlying probabili-
ty distribution that is sampled by a correspond-
ing method stereotyped «rv» for categorizing it as
a random variate sampling method. The under-
lying probability distribution can be indicated in

the model diagram by appending a symbolic ex-
pression, denoting a distribution (with parameter
values), to the method definition clause. For in-
stance, U(1,6) may denote the uniform distribu-
tion with lower bound 1 and upper bound 6, while
Exp(1.5) may denote the exponential distribution
with event rate 1.5.

3. The information design model must distinguish
between exogenous and caused (or endogenous)
event types. For any exogenous event type, the re-
currence of events of that type must be specified,
typically in the form of a random variable, but
in some cases it may be a constant (like 'on each
Monday'). The recurrence defines the elapsed
time between two consecutive events of the given
type (their inter-occurrence time). It can be spec-
ified within the event class concerned in the form
of a special method with the predefined name 're-
currence'.

4. The queues of a queueing system are modeled in
the form of ordered association ends, which rep-
resent ordered-collection-valued reference prop-
erties. For instance, in our service desk model
shown in Figure 21, there is an association be-
tween the classes ServiceDesk and Cus-
tomer with an ordered association end named
waitingCustomers representing a queue.
The annotation {ordered} means that the col-
lection of Customer instances associated with
a particular ServiceDesk is a linearly ordered
set that allows to retrieve (or “pop”) the next cus-
tomer from the waitingCustomers queue.

6.1.1 Conceptual Information Model

We can extract the following candidates for object
types from the problem description by identifying and
analyzing the domain-specific noun phrases: shops
(for being more precise, we also say single product
shops), products (or items), inventories, customers,
customer orders, replenishment orders, and vendors.
Since noun phrases may also denote events (or event
types), we need to take another look at our list and
drop those noun phrases. We recognize that customer
orders and replenishment orders denote messages or
communication events, and not ordinary objects. This
leaves us with the five object types described in the di-
agram shown in Figure 7.

Later, when we make a design for a simulation
model we make several simplifications based on our
simulation research questions. For instance, we may
abstract away from the object types products and
vendors . But in a conceptual system model, we in-
clude all entity types that are relevant for understand-
ing the real-world system, independently of the sim-
plifications we may later make in the solution design
and implementation. This approach results in a mod-
el that can be re-used in other simulation projects with
the same problem domain, but with different research
questions.
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name

vendors
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inventories1
1
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1

Figure 7. A first version conceptual information model, describing object types, only.

Notice that we have also modeled the following as-
sociations between these five object types:

1. The (named) many-to-many association cus-
tomers– order-from –shops.

2. The (un-named) one-to-one association shops–
have –products.

3. The (un-named) one-to-one association shops–
have –inventories.

4. The (named) many-to-one association shops– or-
der-from –vendors.

The second association is one-to-one because we are
assuming that our shops only sell a single product,
while the third association is one-to-one because we
assume that our shops only have one inventory for
their single product.

We have also added some attributes to the model’s
object types, such as a name attribute for customers,
shops, products and vendors, and a reorder point as
well as a stock quantity attribute for inventories. Some
of these attributes can be found in the problem descrip-
tion (such as reorder point), while others have to be in-
ferred by common sense reasoning (such as target in-
ventory for the quantity to which the inventory is to be
restocked).

In the next step, we add event types. We have
already identified customer orders and replenishment
orders as two potentially relevant event types men-
tioned as noun phrases in the problem description. We
can try to extract the other potentially relevant event
types from the text, typically by considering the verb
phrases, such as “pay order”, “hand out product”, and
“deliver”. For getting the names of our event types,
we nominalize these verb phrases. So we get customer
payments, product handovers and deliveries. Finally,
for completing the model, we guess additional event
types using domain expertise and common sense. For
instance, we can imagine that a delivery by the vendor
leads to a corresponding payment by the shop, so we
also need a payments event type.

We add these event types to our model, together
with their participation associations with involved ob-

ject types, now distinguishing class rectangles that de-
note event types from those denoting object types with
the help of UML stereotypes, as shown in Figure 8.
For visual clarity, we use classes without a stereotype
for representing object types (so we can omit the
stereotype «object type» since it is the default).

Notice that a participation association between an
object type and an event type is typically one-to-many,
since an event of that type has typically exactly one
participating object of that type, and, vice versa, an ob-
ject of that type typically participates in many events
of that type.

Notice that, for brevity, we omitted the event type
for the shop declining a customer order. Even so, the
model may seem quite large for a problem like inven-
tory management. However, in a conceptual model, we
describe a complete system including all object and
event types that are relevant for understanding its dy-
namics.

Typically, in a simulation design model we would
make several simplifications allowed by our research
questions, and, for instance, abstract away from the
object types products and inventories. But in a con-
ceptual model of the system under investigation, we
include all relevant entity types, independently of the
simplifications we may later make in the solution de-
sign and implementation. This approach results in a
conceptual model that can be re-used in other simula-
tion projects (with different research questions).

6.1.2 Information Design Model

We now derive an information design model from the
solution-independent conceptual information model
shown in Figure 8. Our design model is solution-spe-
cific because it is a computational design for the fol-
lowing specific research question: compute the av-
erage percentage of lost sales (if an order quantity
is greater than the current stock level, the difference
counts as a lost sale). Such a design model is platform-
independent in the sense that it does not use any mod-
eling element that is specific for a particular platform,
such as a Java datatype.

In the first step, we take a decision about which
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Figure 8. The complete conceptual information model.

name
stockQuantity
reorderPoint
targetInventory
lostSales

SingleProductShop

quantity

«event type»
DailyDemand

shop

1* receiver

1 * quantity

«event type»
Delivery

Figure 9. The initial information design model with attributes and associations (Step 1).

object types and event types defined in the conceptual
model can be dropped in the solution design model.
The goal is to keep only those entity types in the mod-
el, which are needed for being able to answer the re-
search question. One opportunity for simplification is
to drop products and inventories because our assump-
tions imply that there is only one product and only
one inventory, so we can leave them implicit and allo-
cate their relevant attributes to the SingleProductShop
class. As this class name indicates, in the design mod-
el, we follow a widely used naming convention: the
name of a class is a capitalized singular noun phrase in
mixed case.

For simplicity, we add a lostSales attribute to the
SingleProductShop class for storing the lost-sales sta-
tistics for each shop. Alternatively, we could add a spe-
cial class for defining statistics variables.

Further analysis shows that we can drop the event
types customer payments and vendor payments, since
we do not need any payment data, and also product
handovers, since we do not care about the point-of-
sales logistics. This leaves us with three potentially
relevant object types: customers, single product shops
and vendors; and three potentially relevant event
types: customer orders, replenishment orders and de-
liveries.

There is still room for further simplification. Since

for computing the percentage of lost sales, we do not
need the order quantities of individual orders, but only
the total number of ordered items, it is sufficient to
model an aggregate of customer orders like the daily
demand. Consequently, we do not need to consider in-
dividual customers and their orders. So, we can drop
the object type customers and use the aggregate event
type DailyDemand instead of customer orders. Since
we do not need any vendor information, we can also
drop the object type vendors.

Finally, since we can now assume that replenish-
ment orders are placed when a DailyDemand event has
occurred, implying that any replenishment order event
temporally coincides with a DailyDemand event, we
can also drop the event type replenishment orders.

Thus, the simplifications of our first design model-
ing step lead to a model as shown in Figure 9.

Notice that the two associations model the partici-
pation of the shop both in DailyDemand events and in
Delivery events, and the association end names shop
and receiver represent the reference properties Daily-
Demand::shop and Delivery::receiver (as implied by
the corresponding association end ownership dots).
These reference properties allow to access the proper-
ties and invoke the methods of a shop from an event,
which is essential for the event routine of each event
type. Thus, the ontological pattern of objects partic-
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receiver1*

name : NonEmptyString
stockQuantity : NonNegativeInteger
reorderPoint : PositiveInteger
targetInventory : PositiveInteger
lostSales : Percentage

SingleProductShop

createNextEvent() : DailyDemand
recurrence() : PositiveInteger = 1
«rv» demandQuantity() : Integer = U(5,10)

quantity : PositiveInteger

«exogenous event type»
DailyDemand

shop 1*

«rv» leadTime() : Integer = Emp({1:0.2, 2:0.5, 3:0.3})

quantity : PositiveInteger

«caused event type»
Delivery

Figure 10. Adding the range of attributes and random variables (Step 2).

ipating in events and the implied software pattern of
object reference properties in event types are the basis
for defining event routines (and rules) in event types.

In the next step (step 2), we distinguish between
two kinds of event types: exogenous event types and
caused event types , and we also define for all attribut-
es a platform-independent datatype as their range, us-
ing specific datatypes (such as PositiveInteger ,
instead of plain Integer , for the quantity of a deliv-
ery), as shown in Figure 10.

While exogenous events of a certain type occur
periodically with some (typically random) recurrence,
caused events occur at times that result from the inter-
nal causation dynamics of the simulation model. So,
for any event type adopted from the conceptual model,
we choose one of these two categories. For any exoge-
nous event type, we add a class-level ("static") recur-
rence operation, which is responsible for computing
the time until the next event occurs. If new exogenous
events have to be created with specific attribute assign-
ments, like in the case of DailyDemand events, which
require a random variate assignment to their quanti-
ty attribute, a createNextEvent operation is defined for
creating a new instance of the event type as its next oc-
currence.

In the model shown in Figure 10, we define Daily-
Demand as an exogenous event type with a recurrence
of 1, implying that an event of this type occurs on each
day, while we define Delivery as a caused event type.

6.1.3 Deriving Platform-Specific Class Models
from the Information Design Model

After choosing an object-oriented simulation platform
based on the object-event paradigm (e.g., the
JavaScript-based platform OESjs available from
Sim4edu, or one of the Java-based platforms DESMO-
J, JaamSim or AnyLogic), we can derive a platform-
specific class model for this platform from the infor-
mation design model.

In the language of such a platform, there would

normally be two predefined abstract foundation class-
es for defining object types and event types. For in-
stance, in OESjs, they are called oBJECT and eVENT,
each with a set of generic properties and methods for
implementing the two stereotypes «object type» and
«event type». These two classes, with their name in
italics for indicating that they are abstract, are used
for deriving object types and event types in the OESjs
class models shown in Figure 11 and Figure 12.

id[1] : number
name[0..1] : string

oBJECT

stockQuantity : NonNegativeInteger
reorderPoint : PositiveInteger
targetInventory : PositiveInteger
lostSales : Percentage

SingleProductShop

From OESjs
https://sim4edu.com

Figure 11. Defining an object class in OESjs.

onEvent() : eVENT[*]

occurrenceTime : number

eVENT

onEvent() : eVENT[*]
recurrence() : number = 1
createNextEvent() : DailyDemand
demandQuantity() : number

quantity : PositiveInteger
shop : SingleProductShop

DailyDemand

onEvent() : eVENT[*]
leadTime() : number

quantity : PositiveInteger
receiver : SingleProductShop

Delivery

From OESjs
https://sim4edu.com

Figure 12. Defining event classes in OESjs.

Notice that OESjs allows using specific datatypes, like
PositiveInteger, as the range of an attribute, while vari-
ables and functions are not explicitly typed in
JavaScript, which only has one numeric datatype (
number ), not supporting the distinction between dec-
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imal numbers and integers.
OESjs class models no longer contain any explicit

associations, which have been replaced with corre-
sponding reference properties (like DailyDe-
mand::shop and Delivery::receiver). This is the way
associations are implemented in OO programming.

The onEvent operation in the eVENT class is ab-
stract, as indicated by its name in italics. It requires
that any subclass provides a concrete onEvent
method that implements the event routine of the event
rule associated with the event type implemented by the
eVENT subclass. For instance, the onEvent method
of the subclass DailyDemand implements the event
routine of the DailyDemand event rules, see Section
6.2.3. The return type declaration eVENT[*] means
that the onEvent method returns a set of (follow-up)
events.

Notice that for handling the exogenous events of
type DailyDemand, we have added a static createNex-
tEvent method in DailyDemand for creating the next
DailyDemand event by invoking both the de-
mandQuantity method and the recurrence method,
whenever a DailyDemand event has occurred.

6.1.4 Coding a Platform-Specific Class Model

The classes defined in the OESjs class model shown
in Figure 12 can be directly coded as OESjs classes.
For instance, the object class SingleProductShop can
be coded in the following way:

var SingleProductShop = new cLASS({

Name: "SingleProductShop",

supertypeName: "oBJECT",

properties: {

"stockQuantity": {range:"NonNegativeInteger"},

"reorderPoint": {range:"NonNegativeInteger"},

"targetInventory": {range:"PositiveInteger"},

"lostSales": {range:"Percentage"}

}

});

This class just has three simple data-valued properties
(attributes), each defined with an integer range.

The event class DailyDemand can be coded in the
following way:

var DailyDemand = new cLASS({

Name: "DailyDemand",

supertypeName: "eVENT",

properties: {

"quantity": {range: "PositiveInteger"},

"shop": {range: "SingleProductShop"}

},

methods: {

"onEvent": function () {...}

}

});

DailyDemand.recurrence = function () {...}

DailyDemand.createNextEvent = function () {...}

DailyDemand.demandQuantity = function () {...}

Notice that in the DailyDemand event class, we have a
reference property shop allowing to access the prop-

erties of the shop object that participates in a Daily-
Demand event. We also have an onEvent method
for implementing the event rule of the DailyDemand
event type. In this method, the reference property
shop can be used for retrieving or changing the state
of the shop that participates in the DailyDemand event.
We will discuss the code of this event routine below in
the section on implementing the process design model.

6.2 Process Modeling
We make a conceptual process model and a process
design model for the inventory management system.
These models can be expressed visually in the form of
BPMN and DPMN process diagrams and textually in
the form of event rule tables.

A conceptual process model should include the
event types identified in the conceptual information
model, and describe in which temporal sequences
events may occur, based on conditional and parallel
branching. We can do this by describing, for each of
the event types from the conceptual information mod-
el, the causal regularity associated with it in the form
of an event rule that defines the state changes and fol-
low-up events caused by events of that type.

For simplicity, we may merge those types of
events, which can be considered to temporally coin-
cide. This is the case whenever an event uncondi-
tionally causes an immediately succeeding follow-up
event.

6.2.1 Making a Conceptual Process Model

Since inventory management is part of a business sys-
tem, it is natural to make a kind of business process
(BP) model describing actors and their activities, typ-
ically in response to events, as shown in Figure 13,
where we model the two actors Customer and Sin-
gleProductShop, together with their interactions.

Notice that this traditional-style BP model suffers
from the following BPMN deficiencies:

1. Activities/actions are not considered to be special
events.

2. There is no semantic account of the activities/
actions of one actor (such as Customer) being
events for another actor (such as Single Product
Shop). In the case of outgoing message actions
(“message tasks”), like “Place order”, and their
corresponding incoming message events, like
“CustomerOrder”, this relationship can be ex-
pressed with message flow arrows between the
two actors involved, but in the case of non-com-
municative actions and events (like Cus-
tomer:“Make payment” and Shop:CustomerPay-
ment), BPMN does not support expressing such a
relationship.

Also, in basic DES, we neither have an activity nor
an agent concept, and therefore BPMN pools denoting
actors, and the distinction between an action/activity
(like “Place order”) and a corresponding event (like
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Figure 13. A business process model.

“CustomerOrder”) are not needed. Consequently, for
our purpose of making a conceptual process model for
basic DES, we do not use BPMN in the traditional
BP modeling way, but rather a special form of BPMN
models, without activities and without actors/swim-
lanes. Below, in our discussion of a service desk mod-
el, we will show an example of activity modeling,
which requires an extended form of DES by adding an
activity concept, as proposed in (Wagner, Nicolae, &
Werner, 2009).

The purpose of a conceptual process model for
simulation is to identify causal regularities and express
them in the form of event rules, one for each relevant
type of events, at a conceptual level. We can describe
event rules textually and visually in an event rule table
like Table 2.

We can integrate these conceptual event rule mod-
els in a conceptual process model, as shown in Figure
14.

Notice that the BPMN End Event circles used in
the event rule models may have to be converted to
BPMN Intermediate Event circles in the integrated
model.

6.2.2 Process Design Model

A process design model needs to provide a compu-
tationally complete specification of event rules, one

for each event type defined in the information design
model. An event rule for a given event type essentially
defines a set of (possibly conditional) state changes
and a set of (possibly conditional) follow-up events
triggered by an event of that type. We show below how
a computational form of event rules can be visually ex-
pressed in DPMN diagrams.

Since our information design model (tailored to the
given research question of computing the lost sales sta-
tistics) only includes two event types, DailyDemand
and Delivery, we need to model the two corresponding
event rules, as in the event rule design Table 3, where
these rules are modeled textually using pseudo-code.

Notice the general structure of an event expression
like DailyDemand( sh, demQ) @ t : it starts
with the name of an event type (here: DailyDemand)
followed by a comma-separated list of event parameter
names (here, sh and demQ ), corresponding to event
attributes, and an occurrence time annotation @ t .
The event expression is complemented with a para-
meter legend (here, sh: SingleProductShop )
defining the type of each event parameter.

We can also express these two rules visually using
the BPMN-based Discrete Event Process Modeling
Notation (DPMN) defined in (Wagner, 2018), as
shown in Figure 15 and Figure 16.
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Figure 14. The conceptual process model integrating all event rule models.

rec: SingleProductShop
[rec = d.receiver]

------------------------------------
rec.stockQuantity += d.quantity

d: Delivery

Figure 16. A rule design model for the event type De-
livery.

In general, a DPMN event rule design diagram con-
tains event circles with two-part names (like dd: Dai-
lyDemand) specifying an event variable (like dd) and
an event type (like DailyDemand). Event circles may
be associated with one or more data object rectangles
(like sh: SingleProductShop). There is exactly one
start event circle without incoming arrows, which may
contain rule variable declarations in an attached text
annotation. The data object rectangles contain state
change statements using the event variable and possi-
bly the rule variable(s).

An event circle may have one or more outgoing
arrows leading to gateways or to event circles. The
incoming arrows to an event circle represent event
scheduling control flows. They must be annotated with
event attribute assignments and an assignment of the
scheduled event's future occurrence time t', which is
typically defined by adding a delay time Δ to the oc-
currence time t of the triggering event. In a DPMN di-
agram, the occurrence time assignment annotation t' =
t + Δ can be abbreviated by the expression +Δ, like
+Delivery.leadTime() in Figure 15 above.

Notice that Delivery events trigger a state change,
but no follow-up events.

These two event rule design models can be merged
into a process design model shown in Figure 17.

6.2.3 Implementing the Process Design Model
with OESjs

The process design model specifies a set of event
rules, each of which can be implemented with OESjs
by coding its event routine in the onEvent method of
the class that represents the triggering event type. For
instance, the Delivery event rule modeled in Figure 16
can be coded as follows:

var Delivery = new cLASS({

Name: "Delivery",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

this.receiver.stockQuantity += this.quantity;

return []; // no follow-up events

}

}

});

Notice that while in an event rule design diagram, we
declare an event variable standing for the triggering
event (e.g., the variable d in Figure 16), in the corre-
sponding event routine onEvent we use the special
OOP variable this for the same purpose.

The DailyDemand event rule can be coded like so:

var DailyDemand = new cLASS({

Name: "DailyDemand",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var sh = this.shop,

sQ = sh.stockQuantity,

newSQ = sQ - this.quantity,

rP = sh.reorderPoint;

// update stockQuantity

this.shop.stockQuantity = Math.max( 0, newSQ);

// update lostSales if demand > stock

if (newSQ < 0) {

sim.stat.lostSales += Math.abs( newSQ);

newSQ = 0;

Information and Process Modeling for Simulation – Part I

1:15 / 1:26



Table 2. Conceptual event rule models.

ON (event
type)

DO (event routine) Conceptual Event Rule Diagram

customer or-
der

check inventory;
if there is sufficient inventory, then product
handover, else customer departure

customer
order

sufficient inventory?

product
handover

customer departure

inventory

check

product han-
dover

decrement (get product from) inventory;
customer payment

product
handover

customer
payment

inventory

decrement

customer pay-
ment

customer departure
[Notice that we do not describe the increase
of the shop's cash balance due to the pay-
ment, because we focus on inventory.] customer

payment
customer
departure

replenishment
order

delivery

replenishment
order

delivery

delivery
increment inventory;
payment

delivery payment

inventory

increment

}

// schedule new Delivery if stock

// falls below reorder point

if (sQ > rP && newSQ <= rP) {

return [new Delivery({

occTime: this.occTime + Delivery.leadTime(),
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dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

-----------------------------------------
sh.stockQuantity := max( 0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max( 0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 15. A rule design model for the event type DailyDemand.

quantity: sh.targetInventory - newSQ,

receiver: sh

})];

} else return []; // no follow-up events

}

}

});

The full code of this simulation model is available
by loading the web-based simulation
https://sim4edu.com/sims/4/ and inspecting its
JavaScript code in the browser.

7 Example 2: A Service System
In our basic service system example, as implemented
in the Sim4edu simulation library, customers arrive at
random times at a service desk where they have to wait
in a queue when the service desk is busy. Otherwise,
when the queue is empty and the service desk is not
busy, they are immediately served by the service clerk.
Whenever a service is completed, the next customer
from the queue, if there is any, is invited for the ser-
vice.

Table 3. Event rule design with pseudo-code.

ON (event expr.) DO (event routine)

DailyDemand( sh, demQ) @ t

• sh:SingleProductShop references the
shop where the DailyDemand event hap-
pens

• demQ is the daily demand quantity

var sQ := sh.stockQuantity
var newSQ := sQ - demQ
var rP := sh.reorderPoint
sh.stockQuantity := max( 0, newSQ)
if sQ > rP & newSQ <= rP then
if newSQ < 0 then

sh.lostSales += demQ - sQ
newSQ := 0

var delQ := sh.targetInventory − newSQ
schedule Delivery( sh, delQ) @ t + leadTime()

Delivery( rec, delQ) @ t

• rec:SingleProductShop references the
shop that is the receiver of the delivery

• delQ is the delivered quantity

rec.stockQuantity += delQ
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rec: SingleProductShop
[rec = d.receiver]

-----------------------------------
rec.stockQuantity += d.quantity

dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

-----------------------------------------
sh.stockQuantity := max( 0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

d: Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max( 0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 17. A process design model in the form of a DPMN diagram.

7.1 Information Modeling

7.1.1 Conceptual Information Model

It is straight-forward to extract four object types from
the problem description above by analyzing the noun
phrases:

1. customers,
2. service desks,
3. service queues,
4. service clerks.

Thus, a first version conceptual information model of
the service system may look as shown in Figure 18.

Notice that it seems preferable (more natural) to
separate the service queue from the service desk and
not consider the customer that is currently being
served at the service desk to be part of the queue. Con-
ceptually, a queue is a linearly ordered collection of
objects of a certain type with a First-In-First-Out pol-
icy: the next object to be removed is the first object,
at the front of the queue, while additional objects are
added at the end of the queue.

Notice that we model customers and service
clerks as subclasses of people , following a gen-
eral pattern of adding a base type (or kind), such as
people , for all role classes in a model, such as cus-

tomers and service clerks . One of the benefits
of applying this pattern is that we can see that a per-
son playing the role of a service clerk may also play
the role of a customer, which is a special case of the
general possibility that an employee of an organization
may also be a customer of it.

After modeling all potentially relevant object types
in the first step, we model the potentially relevant
event types in a second step:

1. customer arrivals,
2. customers queuing up,
3. customers being notified/invited to move forward

to the service desk,
4. service start,
5. service end,
6. customer departures.

The main type of association between events and ob-
jects is participation . When adding event types to the
object types in our conceptual information model, we
therefore also model the participation types between
them. For instance, in Figure 19, we express that a cus-
tomer arrival event has exactly one customer and one
service desk as its participants.

In order to complete the model of Figure 19, we
may add attributes that help describing objects and

service desksservice queues sevice clerkscustomers

0..1*

1 1 1 1

people

Figure 18. A first version conceptual information model of a service system.
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«object type»
service desks

«object type»
service queues

«object type»
sevice clerks

«object type»
customers

0..1*

1 1 1 1

«event type»
customer arrivals

*

«event type»
customer departures

*

1

*

*

«event type»
service start

*

1

*

«event type»
service end

*

*

«event type»
queuing up

«event type»
inviting for service

1

*

1

*

*

*

«object type»
people

Figure 19. Adding event types to the conceptual information model.

events of these types.
The reader may have noticed that, while only mod-

eling object and event types, our model does implicitly
contain an activity type composed of the two event
types “service start” and “service end”. It is well-
known that, conceptually, an activity is a composite
event that is temporally framed by a pair of start and
end events. Consequently, activity types can be implic-
itly included in a basic DES model by defining cor-
responding pairs of start and end event types. If we
would make an information model for “DES with ac-
tivities”, which will be discussed in Part II of this tu-
torial, we would replace these pairs of start and end
event types with corresponding activity types. In our
example, we would replace the two event types “ser-
vice start” and “service end” with the activity type
“perform service”.

7.1.2 Information Design Model

We now derive platform-independent information de-
sign models from the solution-independent conceptual
information model shown in Figure 19. A design mod-
el is solution-specific because it is a computational de-
sign for the particular purpose of a simulation devel-
opment project. For instance, the purpose may be to
answer one or more specific research questions or to
teach specific concepts/methods with an educational
simulation. We consider the following two research
questions:

1. Compute the maximum queue length statistics.
2. Compute the "mean response time" statistics as

the average length of time a customer spends in
the system from arrival to departure, which is the
average waiting time plus the average service du-
ration.

Answering research question 1 does not require to
model the waiting line as a queue consisting of indi-
vidual customers, since for keeping track of the queue
length and computing its maximum value, a queue
length variable is sufficient and there is no need to
know the composition of the queue and which cus-
tomer is the next one to be served. The natural way for
modeling the queue length variable is to model it as an
attribute of the object type ServiceDesk, as in the mod-
el of Figure 20, which we also call design model 1.
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«rv» serviceDuration() : Decimal {Exp(0.5)}

«object type»
ServiceDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«caused event type»
CustomerDeparture

1

*

*

Figure 21. An information design model for research question 2.

«rv» serviceDuration() : Integer {Exp{0.5}}

queueLength : NonNegativeInteger

«object type»
ServiceDesk

«rv» recurrence() : Integer {Exp{0.5}}

«exogenous event type»
CustomerArrival

serviceTime : PositiveInteger

«caused event type»
CustomerDeparture

1

*

*

Figure 20. An information design model for answer-
ing research question 1.

Research question 2 requires modeling individual cus-
tomers, since for being able to compute the time a cus-
tomer spends in the system we need to know which
customer is next for getting the service and what is
their arrival time. For knowing which customer is next,
we need to model the service queue as a First-In-First-
Out (FIFO) queue, which can be expressed in a UML
class diagram in the form of an ordered association
end, like waitingCustomers in Figure 21. Notice
that by placing a dot on the line at this end of the as-
sociation, and not on the other end as well, we make
the association unidirectional implying the design de-
cision that it will be represented by a reference prop-
erty with name waitingCustomers in the Ser-
viceDesk class. For being able to easily retrieve the
arrival time of a customer, which is an information
item coming from the CustomerArrival event, we
record it along with the customer data, so we add a cor-
responding attribute to the Customer class. The re-
sulting design model 2 is shown in Figure 21.

Concerning the event types described in the con-
ceptual information model, the goal is to keep only
those that are really needed in the design model. This
question is closely related to the question, which types
of state changes and follow-up events have to be mod-
eled for being able to answer the research question(s).

For both research questions, we need to keep track
of changes of the queue length and in the case of re-
search question 2, we also need to be able to add
up the queue waiting time and the service duration
for each customer. For keeping track of queue length
changes, we need to consider all types of events that
may change the queue length: customer arrivals and
customer departures. For being able to add up the
queue waiting time and the service duration, we need
to catch service start and service end events.

After identifying the relevant event types, we can
look for further simplification opportunities by analyz-
ing their possible temporal coincidence. Clearly, we
can consider customer departures to occur immediate-
ly after the corresponding service end events, without
having any effects that could not be merged. There-
fore, we can drop service end events, and take care of
their effects when handling the related customer depar-
ture event.

In addition, we can drop service start events, since
they temporally coincide with customer arrivals when
the queue is empty, or otherwise (when the queue is
not empty) they coincide with service end (and, hence,
with customer departure) events, because each service
end event causes a new service start event as long as
the queue is not empty.

As a result of the above considerations, we only
keep the following two types of events from the con-
ceptual model:

1. CustomerArrival having two participation
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associations representing the reference proper-
ties: (a) customer with the class Customer
as range, and (b) serviceDesk with the class
ServiceDesk as range. As an exogenous event
type, CustomerArrival has a recurrence
function representing a random variable for com-
puting the time in-between two subsequent event
occurrences.

2. CustomerDeparture having one participa-
tion association with ServiceDesk represent-
ing the reference property serviceDesk .

Notice that, for simplicity, we consider the customer
that is currently being served to be part of the queue.
In this way, in the simulation program, we can check if
the service desk is busy by testing if the length of the
queue is greater than 0.

An alternative approach would be not considering
the currently served customer as part of the queue, but
rather use a Boolean attribute isBusy for being able
to keep track if the service desk is still busy with serv-
ing a customer.

In an information design model we distinguish be-
tween two kinds of event types: exogenous event types
and caused event types . While exogenous events of
a certain type occur periodically, typically with some
random recurrence that can be modeled with a proba-
bility distribution, caused events occur at times that re-
sult from the internal causation dynamics of the simu-
lation. So, for any event type adopted from the concep-
tual model, we have to make a decision if we model it
as an exogenous or as a caused event type, and for any
exogenous event type, we specify a recurrence oper-
ation (typically a random variable) in the information
design model.

In both model 1 and model 2, we define Cus-
tomerArrival as an exogenous event type with
a recurrence function that implements a random
variable based on the exponential distribution with
event rate 0.5, symbolically expressed as Exp(0.5),
while we define CustomerDeparture as a caused
event type.

Notice that we have modeled the random duration
of a service with the help of the random variable op-
eration serviceDuration() shown in the third
compartment of the ServiceDesk class, based on
the exponential distribution function Exp(0.5). Notice
also that in our design we do not need the participation
association between CustomerDeparture and
Customer since for any customer departure event the
customer concerned can be retrieved by getting the
first item from the waitingCustomers queue.

7.1.3 Deriving an OESjs Class Model from an
Information Design Model

We derive an OESjs class model, shown in Figure 22
and Figure 23, for the object types and event types de-
fined in the design model of Figure 21.

serviceDuration() : number

waitingCustomers : array( Customer)

ServiceDesk
arrivalTime : number

Customer

id[1] : number
name[0..1] : string

oBJECT

From the OESjs framework
see http://sim4edu.com

Figure 22. Defining object types in OESjs.

onEvent() : eVENT[*]

occurrenceTime : number

eVENT

onEvent() : eVENT[*]
recurrence() : number

customer : Customer
serviceDesk : ServiceDesk

CustomerArrival

onEvent() : eVENT[*]

serviceDesk : ServiceDesk

CustomerDeparture

From OESjs, see
http://sim4edu.com

Figure 23. Defining event types in OESjs.

Notice that in the OESjs class model, associations are
represented by corresponding reference properties
(like ServiceDesk::waitingCustomers and Customer-
Arrival::serviceDesk).

7.1.4 Coding the OESjs Class Model

The object class ServiceDesk defined in the OESjs
class model shown in Figure 22 can be coded as fol-
lows:

var ServiceDesk = new cLASS({

Name: "ServiceDesk",

supertypeName: "oBJECT",

properties: {

"waitingCustomers": {

range: "Customer",

label: "Waiting customers",

minCard: 0,

maxCard: Infinity}

}

});

ServiceDesk.serviceDuration = function () {

return rand.exponential( 0.5);

};

7.2 Process Modeling

7.2.1 Conceptual Process Model

For brevity, we show the conceptual event rule models
only for a selection of the event types from the concep-
tual information model.

The individual event rule models shown in Table 4
can be integrated with each other as shown in Figure
24 where we have to express the event types “service
start”, “service end” and “customer departure” in the
form of BPMN’s intermediate events for complying
with the BPMN syntax.
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Table 4. Conceptual event rule models for the service system example.

ON
(event
type)

DO (event routine) Conceptual Event Rule Diagram

customer
arrival

the queue (length) is incremented;
if there is no one else in the queue (queue
length = 1), the service for the newly arrived
customer starts

customer
arrival

service start

queue

increment

[queue length = 1]

service
start

service end

service
end

customer departure

service end customer
departure

customer
departure

the queue (length) is decremented; if there is
still someone in the queue (queue length > 0),
the next service starts

queue

customer
departure

service start

decrement

[queue length > 0]

service start service end

customer arrival

queue

customer
departure

increment decrement

[queue length > 0]

[queue length = 1]

Figure 24. A conceptual process model integrating
the event rule diagrams of Table 4.

If we would make a process model for a form of basic
DES extended with activities, which will be discussed
in Part II of this tutorial, we would replace the two
event types “service start” and “service end” with the
activity type “perform service” resulting in the model
depicted in Figure 25.

customer arrival

queue

customer
departure

perform
service

[queue length > 0]

increment decrement

[queue length = 1]

Figure 25. The model of Figure 24 with an activity
replacing the start/end event pair.

7.2.2 Making a Process Design Model

In the process design model, we only need to include
two event rules, one for CustomerArrival and one for
CustomerDeparture events, since only these two event
types have been included in the information design
model in Figure 21.
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Table 5. The event rule design table for the service system.

ON (event expr.) DO (event routine)

CustomerArrival( c, sd) @ t

• c:Customer references the arrived customer
• sd:Servicedesk references the service desk where the new

customer arrived

sd.waitingCustomers.push(c)
if sd.waitingCustomers.length = 1 then
schedule CustomerDeparture( sd) @
(t + ServiceDesk.serviceDuration())

CustomerDeparture( sd) @ t

• sd:Servicedesk references the service desk from where
the customer departs

sd.waitingCustomers.pop()
if sd.waitingCustomers.length > 0 then
schedule CustomerDeparture( sd) @
(t + ServiceDesk.serviceDuration())

These two event rule design models are visually
expressed in the DPMN diagrams shown in Figure 26
and Figure 27.

sd: ServiceDesk
[sd = ca.serviceDesk]
---------------------------

PUSH ca.customer TO
sd.waitingCustomers

ca: Customer
Arrival

Customer
Departure

[ sd.waitingCustomers.
length = 1 ]

+ServiceDesk.
serviceDuration()

Figure 26. A DPMN design model for the customer
arrival event rule.

sd: ServiceDesk
[sd = cd.serviceDesk]
----------------------------

POP FROM
sd.waitingCustomers

cd:Customer
Departure

[ sd.waitingCustomers.
length > 0 ]

+ServiceDesk.
serviceDuration()

Figure 27. A DPMN design model for the customer
departure event rule.

These two event rule design models can be merged in-
to a process design model shown in Figure 28.

Notice that since sd.waitingCustomers de-
notes a queue, we use the queue operations PUSH
and POP in the state change statements within the
sd:ServiceDesk object rectangle. Generally, in
DPMN, state change statements are expressed in a
state change language that depends on the state struc-
ture of the modeled system. Typically, this will be an
object-oriented system state structure where basic state
changes consist of attribute value changes as well as
creations and destructions of links between objects.
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sd: ServiceDesk
[sd = ca.serviceDesk]
---------------------------

PUSH ca.customer TO
sd.waitingCustomers

ca:Customer
Arrival

sd: ServiceDesk
[sd = cd.serviceDesk]
----------------------------

POP FROM
sd.waitingCustomers

cd:Customer
Departure

[ sd.waitingCustomers.
length = 1 ]

+ServiceDesk.
serviceDuration() [ sd.waitingCustomers.

length > 0 ]

+ServiceDesk.
serviceDuration()

Figure 28. A DPMN process design model integrating the two rule design models.

7.2.3 Implementing the Process Design Model
with OESjs

The event rules specified by the process design model
can be implemented with OESjs by coding its event
routine in the onEvent method of the class that rep-
resents the triggering event type. For instance, the Cus-
tomerArrival event rule modeled in Figure 26 can be
coded as follows:

var CustomerArrival = new cLASS({

Name: "CustomerArrival",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var srvTm=0, followupEvents=[],

sd = this.serviceDesk;

// create new customer object

this.customer = new Customer(

{arrivalTime: this.occTime});

sim.addObject( this.customer);

// push new customer to the queue

sd.waitingCustomers.push( this.customer);

// if the service desk is not busy

if (sd.waitingCustomers.length === 1) {

srvTm = ServiceDesk.serviceDuration();

followupEvents.push( new CustomerDeparture({

occTime: this.occTime + srvTm,

serviceDesk: sd

}));

}

return followupEvents;

}

}

});

The CustomerDeparture event rule can be coded like
so:

var CustomerDeparture = new cLASS({

Name: "CustomerDeparture",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var srvTm=0, followupEvents=[],

sd = this.serviceDesk;

// pop customer from FIFO queue

var departingCustomer = sd.waitingCustomers.shift();

// remove customer from simulation

sim.removeObject( departingCustomer);

// if there are still customers waiting

if (sd.waitingCustomers.length > 0) {

// schedule next departure

srvTm = ServiceDesk.serviceDuration();

followupEvents.push( new CustomerDeparture({

occTime: this.occTime + srvTm,

serviceDesk: sd

}));

}

return followupEvents;

}

}

});

The full code of this simulation model is available
by loading the web-based simulation
https://sim4edu.com/sims/2/ and inspecting its
JavaScript code in the browser.

8 Conclusions
Combining UML class diagrams with BPMN and
DPMN process diagrams allows making visual models
for conceptualizing the problem domain of a simula-
tion study and for designing a simulation model. The
visual simulation design model, consisting of a UML
class model and a set of DPMN event rule models,
represents a computational specification of an abstract
state machine that can be directly coded with any OOP
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language or with any OO simulation technology sup-
porting event scheduling.

Unlike in information systems and software en-
gineering, making visual domain models and design
models is not yet an established best practice in mod-
eling and simulation. Since these models facilitate the
communication, sharing, reuse, maintenance and evo-
lution of a simulation model, it can be expected that
this will change in the near future.

After establishing the foundational layer of an
OEM approach, based on the concepts of objects and
events, we will show how the more advanced mod-
eling concepts of activities and GPSS/SIMAN/Arena-
style Processing Networks can be defined on the basis
of objects and events in the second Part of this tutorial.
Finally, in Part III, we will further extend the OEM
paradigm towards agent-based modeling and simula-
tion by adding the concepts of agents with perceptions,
actions and beliefs.
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